Long run rates and monetary policy

Bayesian Analysis and Modeling (BAM) Summer Workshop 2018

Gianni Amisano (FRB, Georgetown University), Oreste Tristani (ECB)\(^1\)

University of Melbourne 12/03/2018

\(^1\)Views expressed here are not those of the ECB or of the FRB
"Movements in the [...] yield spread are associated with movements in risk" (Atkeson and Kehoe, 2010; Cochrane, 2010)

In the conventional view, the short rate drops at the beginning of a recession, but it is expected to return the steady state within at least 10 years.
"Movements in the [...] yield spread are associated with movements in risk" (Atkeson and Kehoe, 2010; Cochrane, 2010)

- In the conventional view, the short rate drops at the beginning of a recession, but it is expected to return to the steady state within at least 10 years.
- In fact, taking account of risk premia, 10 year expected interest rates fall just as fast as the 1 year rate.
Our questions

- If yield spreads are associated with movements in risk, what produces them? Are they caused by monetary policy or are they exogenous?
Our questions

- If yield spreads are associated with movements in risk, what produces them? Are they caused by monetary policy or are they exogenous?
- If long term yields net of risk premia are not constant, what do they imply for expectations of the future path of monetary policy rates ...
Our questions

- If yield spreads are associated with movements in risk, what produces them? Are they caused by monetary policy or are they exogenous?
- If long term yields net of risk premia are not constant, what do they imply for expectations of the future path of monetary policy rates ...
- ... and for inflation expectations?
Our paper

- A single model-feature can reconcile the macro and the finance literature: *heteroskedasticity* (in the form of regime switching)
- Uncertainty shocks also amount to variation in risk: during recessions volatility drives the increase in risk premia. Risk premia are *countercyclical*—as in the finance literature
Our paper

- A single model-feature can reconcile the macro and the finance literature: heteroskedasticity (in the form of regime switching)
 - Uncertainty shocks also amount to variation in risk: during recessions volatility drives the increase in risk premia. Risk premia are countercyclical—as in the finance literature
 - "Uncertainty shocks" change precautionary saving: during recessions volatility increases and real rates fall. Nominal 10 year expected interest rates fall together with policy rates—as "observed" in the data
Our paper

- The quantitative story
 - Risk-neutrality (EH holding) an artifax of linearization: we analyse the nonlinear solution of a DSGE model
Our paper

- The quantitative story
 - Risk-neutrality (EH holding) an artifax of linearization: we analyse the nonlinear solution of a DSGE model
 - We estimate the nonlinear model on both macro and yields data for the U.S.
Motivation

Our paper

- The quantitative story
 - Risk-neutrality (EH holding) an artifax of linearization: we analyse the nonlinear solution of a DSGE model
 - We estimate the nonlinear model on both macro and yields data for the U.S.
 - We show that the model fits both sets of data reasonably well
On heteroskedastic shocks in macroeconomic–Sims-Zha (2006), Primiceri (2005), Justiniano-Primiceri (2008) ...
On heteroskedastic shocks in macroeconomic—Sims-Zha (2006), Primiceri (2005), Justiniano-Primiceri (2008) ...

Papers suggesting that consumption-based models with exotic preferences are OK at fitting unconditional moments of yields—Piazzesi-Schneider (2006); HTV (2008); Rudebusch-Swanson (2012); Swanson (2014) ...
On heteroskedastic shocks in macroeconomic–Sims-Zha (2006), Primiceri (2005), Justiniano-Primiceri (2008) ...

Papers suggesting that consumption-based models with exotic preferences are OK at fitting *unconditional* moments of yields–Piazzesi-Schneider (2006); HTV (2008); Rudebusch-Swanson (2012); Swanson (2014) ...

Few empirical applications in nonlinear models–van Bindesberger *et al.*(2012), Andreasen (2012) ...
The model

- Simple new Keynesian model with Rotemberg adj. costs and inflation indexation, (external) habits
The model

- Simple new Keynesian model with Rotemberg adj. costs and inflation indexation, (external) habits
- Level and growth technology shocks

\[Y_t = (Z_t B_t) L_t^\alpha \]
The model

- Simple new Keynesian model with Rotemberg adj. costs and inflation indexation, (external) habits
- Level and growth technology shocks

\[Y_t = (Z_t B_t) L_t^\alpha \]

- Resource constraint

\[Y_t = C_t + G_t + \frac{\zeta}{2} \left(\Pi_t - \left(\Pi^* \right)^{1-\iota} \Pi_{t-1}^\iota \right)^2 Y_t \]
The model

- Policy rule

\[i_t = \text{const.} + \psi_{\pi}(\pi_t - \pi^*) + \psi_Y(\tilde{y}_t - \tilde{y}) + \rho_i i_{t-1} + \eta_{t+1} \]
The model

- Policy rule

 \[i_t = \text{const.} + \psi_{\Pi} (\pi_t - \pi^*) + \psi_Y (\tilde{y}_t - \tilde{y}) + \rho_i i_{t-1} + \eta_{t+1} \]

- Note: constant target \(\pi^* \)
Distinguishing feature: heteroskedasticity

- Shocks: productivity (stationary and integrated), gov. spending, mark-up, policy
Distinguishing feature: heteroskedasticity

- **Shocks:** productivity (stationary and integrated), gov. spending, mark-up, policy
- Two-state, independent Markov switching in the innovation variances:

 \[\varepsilon_{i,t+1} \sim N\left(0, \sigma_{i,s_i,t}\right) \quad \text{for } i = z, G, \eta \]

 \[\sigma_{i,s_i,t} = \sigma_{i,0}s_{i,t} + \sigma_{i,1}(1 - s_{i,t}) \]

 with constant transition probabilities

 \[p(s_{i,t+1} = k, s_{i,t} = j) = p_{i,jk} \]
Distinguishing feature: preferences

- Epstein-Zin-Weil preferences

\[U \left[u_t, (E_t V_{t+1}^{1-\gamma}) \right] = \left\{ (1 - \beta) u_t^{1-\psi} + \beta (E_t V_{t+1}^{1-\gamma})^{\frac{1-\psi}{1-\gamma}} \right\}^{\frac{1}{1-\psi}} \]
Distinguishing feature: preferences

- Epstein-Zin-Weil preferences

\[U \left[u_t, \left(E_t V_{t+1}^{1-\gamma} \right) \right] = \left\{ (1 - \beta) u_t^{1-\psi} + \beta \left(E_t V_{t+1}^{1-\gamma} \right)^{\frac{1-\psi}{1-\gamma}} \right\}^{\frac{1}{1-\psi}} \]

- \(\gamma = \) risk aversion, \(\psi = \) inverse of EIS
Distinguishing feature: preferences

• Epstein-Zin-Weil preferences

\[
U \left[u_t, (E_t V_{t+1}^{1-\gamma}) \right] = \left\{ (1 - \beta) u_t^{1-\psi} + \beta (E_t V_{t+1}^{1-\gamma})^{\frac{1-\psi}{1-\gamma}} \right\}^{\frac{1}{1-\psi}}
\]

• \(\gamma = \text{risk aversion}, \ \psi = \text{inverse of EIS} \)

• Temporary utility with Trabandt and Uhlig (2011) specification

\[
u = (C_t - h\Xi_t C_{t-1}) \left(1 - \eta (1 - \psi) N_t^{1 + \frac{1}{\phi}} \right)^{\frac{\psi}{1-\psi}}
\]
Why recursive preferences and habits

- Habits
 - Have first order effects (hump shaped IRFs). High risk aversion makes consumption insensitive to real rate
Why recursive preferences *and* habits

- Habits
 - Have first order effects (hump shaped IRFs). High risk aversion makes consumption insensitive to real rate
- Recursive preferences
 - Have no effects to first order – dynamics as in a model with EU. Risk aversion parameter "free" to match yields.
Solution I

As usual

\[
E_t \left[f \{x_{t+1}, y_{t+1}, x_t, y_t, ; s_{t+1}, s_t\} \right] = 0
\]
Solution 1

- As usual
 \[E_t \left[f \{x_{t+1}, y_{t+1}, x_t, y_t, ; s_{t+1}, s_t\} \right] = 0 \]

- We seek solutions of the form (Amisano and Tristani, JEDC 2011—a special case of recent Foerster et al., 2016)

\[
f (x_t, \sigma; s_t) = f (\bar{x}; 0; s_t) + F_{s_t} (x_t - \bar{x}_{s_t}) \\
+ \frac{1}{2} \left(I_{ny} \otimes (x_t - \bar{x}_{s_t})' \right) E_{s_t} (x_t - \bar{x}_{s_t}) + k_{y,s_t} \sigma^2
\]
Solution II

- Only impact of heteroskedasticity in constant term

\[\hat{y}_t = F\hat{x}_t + \frac{1}{2} \left(I_{ny} \otimes \hat{x}'_t \right) E\hat{x}_t + k_{y,s_t} \]
Solution II

- Only impact of heteroskedasticity in constant term

\[\hat{y}_t = F\hat{x}_t + \frac{1}{2} \left(I_{n_y} \otimes \hat{x}'_t \right) E\hat{x}_t + k_{y,s_t} \]

- Similarly for predetermined variables
Estimation I

- Model is nonlinear

\[
\begin{align*}
y_{t+1}^o &= k_{y,j} + F\hat{x}_{t+1} + \frac{1}{2} \left(I_{ny} \otimes \hat{x}'_{t+1} \right) E\hat{x}_{t+1} + Dv_{t+1} \\
x_{t+1} &= k_{x,i} + P\hat{x}_t + \frac{1}{2} \left(I_{nx} \otimes \hat{x}'_t \right) G\hat{x}_t + \tilde{\sigma}\Sigma_i w_{t+1}
\end{align*}
\]
Estimation I

- Model is nonlinear

\[
y_{t+1}^o = k_{y,j} + F\hat{x}_{t+1} + \frac{1}{2} \left(I_n_y \otimes \hat{x}'_{t+1} \right) E \hat{x}_{t+1} + Dv_{t+1} \\
x_{t+1} = k_{x,i} + P\hat{x}_t + \frac{1}{2} \left(I_n_x \otimes \hat{x}'_t \right) G \hat{x}_t + \tilde{\sigma}\Sigma_i w_{t+1}
\]

- but main source of nonlinearity are intercept shifts. Hence extended Kalman filter

\[
y_{t+1}^o = \tilde{k}^{(i,j)}_{y,t+1} + \tilde{F}^{(i,j)}_{t+1} \hat{x}_{t+1} + Dv_{t+1} \\
\hat{x}_{t+1} = \tilde{k}^{(i)}_{x,t} + \tilde{P}^{(i)}_{t} \hat{x}_t + \Sigma_i w_{t+1}
\]
Estimation II

- We use Kim’s (1994) approximate filter to compute the likelihood.
Estimation II

- We use Kim’s (1994) approximate filter to compute the likelihood.
- Combine the likelihood with a prior and sample using a tuned Metropolis-Hastings algorithm.
Estimation II

- We use Kim’s (1994) approximate filter to compute the likelihood.
- Combine the likelihood with a prior and sample using a tuned Metropolis-Hastings algorithm.
- Tried unscented KF and particle filter without changes in the results.
Data

Quarterly US data: 1966:q1 to 2009:q1
Data

- Quarterly US data: 1966:q1 to 2009:q1
- Six observables: real per-capita GDP; real personal per-capita consumption; consumption deflator; 3-month nominal rate; 3-year and 10-year zero-coupon yields
Data

- Quarterly US data: 1966:q1 to 2009:q1
- Six observables: real per-capita GDP; real personal per-capita consumption; consumption deflator; 3-month nominal rate; 3-year and 10-year zero-coupon yields
- "Measurement errors" on all variables
Parameter estimates

- Monetary policy rule:

\[\hat{i}_t = 0.09 \left[3.09 (\pi_t - \pi^*) + 0.57 (\tilde{y}_t - \tilde{y}) \right] + 0.91 \hat{i}_{t-1} + \eta_{t+1}. \]
Parameter estimates

- Monetary policy rule:

\[\hat{i}_t = 0.09 \left[3.09 (\pi_t - \pi^*) + 0.57 (\tilde{y}_t - \tilde{y}) \right] + 0.91 \hat{i}_{t-1} + \eta_{t+1}. \]

- High inertia
Parameter estimates

<table>
<thead>
<tr>
<th></th>
<th>post mean</th>
<th>post sd</th>
<th>prior mean</th>
<th>prior sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π</td>
<td>1.0061</td>
<td>0.0007</td>
<td>1.0062</td>
<td>0.0007</td>
</tr>
<tr>
<td>ψ_π</td>
<td>0.2676</td>
<td>0.0241</td>
<td>0.1990</td>
<td>0.1001</td>
</tr>
<tr>
<td>ψ_y</td>
<td>0.0497</td>
<td>0.0075</td>
<td>0.0200</td>
<td>0.0010</td>
</tr>
<tr>
<td>ρ_i</td>
<td>0.9135</td>
<td>0.0169</td>
<td>0.8494</td>
<td>0.1002</td>
</tr>
<tr>
<td>Ξ</td>
<td>1.0045</td>
<td>0.0004</td>
<td>1.0050</td>
<td>0.0010</td>
</tr>
<tr>
<td>ι</td>
<td>0.7333</td>
<td>0.1116</td>
<td>0.5003</td>
<td>0.1899</td>
</tr>
<tr>
<td>φ</td>
<td>0.6156</td>
<td>0.0846</td>
<td>1.0022</td>
<td>0.5049</td>
</tr>
<tr>
<td>γ</td>
<td>11.5185</td>
<td>3.6747</td>
<td>10.9537</td>
<td>6.9730</td>
</tr>
<tr>
<td>ψ</td>
<td>1.3075</td>
<td>0.0868</td>
<td>1.2035</td>
<td>0.2830</td>
</tr>
<tr>
<td>ζ</td>
<td>33.8071</td>
<td>3.1344</td>
<td>14.9744</td>
<td>6.9819</td>
</tr>
<tr>
<td>h</td>
<td>0.8619</td>
<td>0.0261</td>
<td>0.4996</td>
<td>0.1886</td>
</tr>
<tr>
<td>β</td>
<td>0.9984</td>
<td>0.0006</td>
<td>0.9986</td>
<td>0.0014</td>
</tr>
</tbody>
</table>
Parameter estimates

<table>
<thead>
<tr>
<th></th>
<th>post mean</th>
<th>post sd</th>
<th>prior mean</th>
<th>prior sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{G,11})</td>
<td>0.8760</td>
<td>0.0556</td>
<td>0.8997</td>
<td>0.0657</td>
</tr>
<tr>
<td>(p_{G,00})</td>
<td>0.9413</td>
<td>0.0351</td>
<td>0.8994</td>
<td>0.0662</td>
</tr>
<tr>
<td>(p_{\eta,11})</td>
<td>0.9595</td>
<td>0.0196</td>
<td>0.8996</td>
<td>0.0657</td>
</tr>
<tr>
<td>(p_{\eta,00})</td>
<td>0.9079</td>
<td>0.0447</td>
<td>0.8998</td>
<td>0.0658</td>
</tr>
<tr>
<td>(p_{z,11})</td>
<td>0.9728</td>
<td>0.0091</td>
<td>0.9013</td>
<td>0.0651</td>
</tr>
<tr>
<td>(p_{z,00})</td>
<td>0.9317</td>
<td>0.0190</td>
<td>0.8993</td>
<td>0.0662</td>
</tr>
<tr>
<td>(\rho_{\mu})</td>
<td>0.5487</td>
<td>0.0581</td>
<td>0.8552</td>
<td>0.0916</td>
</tr>
<tr>
<td>(\rho_{z})</td>
<td>0.9889</td>
<td>0.0018</td>
<td>0.8582</td>
<td>0.0899</td>
</tr>
<tr>
<td>(\rho_{G})</td>
<td>0.9091</td>
<td>0.0298</td>
<td>0.8559</td>
<td>0.0906</td>
</tr>
</tbody>
</table>
Parameter estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Post mean</th>
<th>Post sd</th>
<th>Prior mean</th>
<th>Prior sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{me,\pi}$</td>
<td>1.4E-06</td>
<td>1.6E-06</td>
<td>1.4E-06</td>
<td>1.3E-06</td>
</tr>
<tr>
<td>$\sigma_{me,\Delta c}$</td>
<td>1.3E-06</td>
<td>6.8E-07</td>
<td>1.4E-06</td>
<td>1.1E-06</td>
</tr>
<tr>
<td>$\sigma_{me,\Delta y}$</td>
<td>0.0036</td>
<td>0.0006</td>
<td>0.0005</td>
<td>0.0003</td>
</tr>
<tr>
<td>$\sigma_{me,i}$</td>
<td>1.3E-06</td>
<td>7.5E-07</td>
<td>1.4E-06</td>
<td>1.0E-06</td>
</tr>
<tr>
<td>$\sigma_{me,i_{12}}$</td>
<td>0.0007</td>
<td>7.6E-05</td>
<td>0.0014</td>
<td>0.0010</td>
</tr>
<tr>
<td>$\sigma_{me,i_{40}}$</td>
<td>0.0004</td>
<td>5.0E-05</td>
<td>0.0014</td>
<td>0.0010</td>
</tr>
</tbody>
</table>
Dynamic correlations: macro variables
Dynamic correlations: yields
Forward rates

1y ahead

3y ahead

10y ahead

Actual
Model based

Amisano (FRB), Tristani (ECB)

LR rates and mon pol

BAM 2018 23 / 30
Probability of low-variance regimes
Expected excess holding period returns

Data and results

Amisano (FRB), Tristani (ECB) LR rates and mon pol BAM 2018 25 / 30
Long-term rates over the business cycle

- "Risk" or "uncertainty" shocks important for E_i

After recessions, uncertainty dynamics are reversed. It becomes clear that i will rise quickly. Risk premia ↓ and forward rates become closer to E_i.
Long-term rates over the business cycle

- "Risk" or "uncertainty" shocks important for E_i
- With recessions, uncertainty ↑ and drives up risk premia. Forward rates ↑, but not E_i
Long-term rates over the business cycle

- "Risk" or "uncertainty" shocks important for E_i
- With recessions, uncertainty ↑ and drives up risk premia. Forward rates ↑, but not E_i
- Indeed, E_i ↓ because demand for precautionary saving ↑, consumption ↓ and adds ↓ pressure on y and π
Long-term rates over the business cycle

- "Risk" or "uncertainty" shocks important for E_i
- With recessions, uncertainty ↑ and drives up risk premia. Forward rates ↑, but not E_i
- Indeed, E_i ↓ because demand for precautionary saving ↑, consumption ↓ and adds ↓ pressure on y and π
- After recession "confidence" returns. Uncertainty dynamics are reversed. It becomes clear that i will rise quickly. Risk premia ↓ and forward rates become closer to E_i
Expected inflation over the next 10 years

Survey
Model based

Amisano (FRB), Tristani (ECB)
LR rates and mon pol

BAM 2018 27 / 30
Determinants of long-term inflation expectations

- Anchoring in the 1980s?
Determinants of long-term inflation expectations

- Anchoring in the 1980s?
- A sequence of highly persistent, adverse shocks led to an increase in trend inflation in the 1970s. The shocks were slowly reabsorbed over the 1980s. Long-term inflation expectations moved accordingly.
Determinants of long-term inflation expectations

- Anchoring in the 1980s?
- A sequence of highly persistent, adverse shocks led to an increase in trend inflation in the 1970s. The shocks were slowly reabsorbed over the 1980s. Long-term inflation expectations moved accordingly
- Inflation was never conquered. Prolonged deviations of inflation from price stability can happen again
Estimated model to account for key features of the transmission of monetary policy to long-term rates. Uncertainty/volatility shocks are important to explain observed variations in yields.
Conclusions

- Estimated model to account for key features of the transmission of monetary policy to long-term rates. Uncertainty/volatility shocks are important to explain observed variations in yields.

- In the early parts of recessions, forward spreads are high because uncertainty and risk premia $↑$ not due to E_i. When recession ends, uncertainty and risk premia fall, and E_i rise; changes in forward rate reflect expected future interest rates.
Conclusions (II)

- Movements in risk affecting spreads are not caused by monetary policy actions. But monetary policy responds to changes in risk, because of changes in precautionary saving.
Movements in risk affecting spreads are not caused by monetary policy actions. But monetary policy responds to changes in risk, because of changes in precautionary saving.

Changes in real interest rates and in risk premia are important determinants of long term rates.
Movements in risk affecting spreads are not caused by monetary policy actions. But monetary policy responds to changes in risk, because of changes in precautionary saving.

Changes in real interest rates and in risk premia are important determinants of long term rates.

10-year inflation expectations are less firmly anchored than one would conclude, based on survey data.