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The economics of oil, biofuel and food commodities

Abstract

We study the effects on the food market of the introduction of biofuels as a substitute for fossil
fuel in the energy market. We consider a world economy with an oil cartel and a competitive
fringe of farmers producing energy in the form of biofuels. Farmers also produce food and sell it
on the world food market. We determine the resulting relationship between prices in the energy
and food markets and characterize the cartel’s extraction path and the price path of energy.
We show that the price of food will be growing as long the oil stock is being depleted, whether
population is growing or not, and that it will keep growing after the oil stock is exhausted if
population is growing. An analysis of the effects of the productivity of land use in either the
food or the biofuel sectors is carried out.

Keywords: Biofuel; Oil depletion; Population growth; Energy price; Food price

Résumé

Nous étudions l’effet sur le marché des aliments de l’introduction sur le marché de l’énergie
de biocarburants, comme substitut aux combustibles fossiles. Nous supposons une économie où
cohabitent sur le marché de l’énergie un cartel pétrolier et une frange compétitive de cultivateurs
qui produit de l’énergie sous forme de biocarburant. Les cultivateurs produisent également des
produits agricoles qu’ils vendent sur le marché des aliments. Nous caractérisons la relation qui
en résulte entre le prix de l’énergie et le prix des aliments, ainsi que le sentier d’extraction du
cartel pétrolier et le sentier de prix de l’énergie. Il est démontré que le prix des aliments va
crôıtre aussi longtemps que le stock de pétrole n’est pas épuisé, et cela que la population soit
croissante ou non. Il continuera à crôıtre une fois le stock de pétrole épuisé si la population
est croissante. Les effets de l’amélioration dans la productivité de la terre dans la production
d’aliments ainsi que dans la production de biocarburant sont analysés.

Mots-clés : Biocarburant ; Épuisement du pétrole ; Croissance de la population ; Prix de l’énergie ;
Prix des aliments.



1 Introduction

The recent food crisis has become a major concern for world leaders. In June 2008, the

World Food Summit organized by the United Nations that took place in Rome raised many

questions about the causes of this crisis and what to do about it. Indeed, since the year

2000, major food crop prices have increased for the first time since the 1970s. The prices of

corn, rice, wheat as well as other crops reached record highs. According to a recent article

by the Economist magazine,1 food accounts in Botswana and South Africa for a fifth of the

consumer price index; in Sri Lanka and Bangladesh it accounts for two-thirds. This might

explain the violent clashes that took place in several developing countries (Haiti, Cameroon

and Egypt, among others) in the wake of the sharp increase in crop prices that occurred in

2007 and 2008.

Against this backdrop, a number of explanations for this crisis have been proposed. First,

a line of argument attributes the increase in major crop prices to the rising world demand

for food, which has not been followed by adequate investments in the agricultural sector.

The proponents of this view, namely the UN secretary general, declared that global food

output must increase by 50% by 2030 in order to maintain ‘food security’. However, such

an argument suffers from a drawback. While the lack of investments in agriculture has been

a long-term structural problem ever since the end of the ‘first green revolution’ of the 1960s

and 70s, it is the case that the recent rise in crop prices has been sharp and dramatic. An

alternative view considers that the recent development of the biofuel industry has a lot to

do with the food crisis. Advocates of this view include a number of specialized NGOs and

renowned international research organizations, like the International Food Policy Research

Institute (IFPRI). According to the IFPRI, biofuels account for up to 30% of the increase

in the price of agricultural commodities.

From 1999 until the summer of 2008, both global energy demand and fossil fuels prices

1From The Economist print edition, June 5, 2008, page 70.



have been steadily rising.2 This has caused pressure for the development of biofuels as an

alternative source of energy.3 This was not the case during the 1990s, when the fossil fuel

price was too low to allow for the economic viability of this renewable resource. This increase

in the demand for biofuels has generated a ‘crowding-out effect’ in the agricultural sector.

Many argue that scarce agricultural resources are being diverted away from food production

towards the production of biofuels, which results in a reduction in global crop supplies.

The fact that the prices of oil and food commodities have both tumbled during a period

of time following the last quarter of 2008 also suggests that, during the current decade,

both prices have become highly positively correlated. In this paper we investigate, within

a reasonably tractable model, the mechanisms through which these two markets are linked

and how the development of the biofuel industry has affected the correlation between energy

and food prices. The model also allows us to look at the possible impacts on food and energy

prices of improving land use in either food or biofuel production. As we will show, those

impacts are complex and difficult to predict without some careful empirical analyses.

Since the questions arising from the introduction of biofuels are relatively recent, the

economic literature on this subject is limited. Moreover, as pointed out by Rajagopal and

Zilberman (2007) in a World Bank policy survey, “the environmental literature is dominated

by a discussion of net carbon offset and net energy gain, while indicators relating to impact

on human health, soil quality, biodiversity, water depletion, etc., have received much less at-

tention”.4 Chakravorty, Hubert and Nostbakken (2009) point out that most of the literature

focuses on life cycle assessment of biofuels, with the main conclusion being that they are not

carbon neutral. There is also a small literature on ’food versus fuel’ where the price of oil is

2China and India’s staggering growth rates account for a large chunk of that.
3Not to mention environmental lobbying and political pressures that have led to an additional regulation

induced demand. For instance, in 2010, the government of Canada imposed a mandatory 5% biofuel content
in each liter of gasoline sold in the local market.

4See Rajagopal and Zilberman (2007), page 2. They also point out that serious concerns about the
carbon benefits of current biofuels can be raised, namely the fact that biofuels consume a significant amount
of energy that is derived from fossil fuels. See as well Giampietro, Ulgiati and Pimentel (1997), Lal (2004),
Pimentel and Patzek (2005), Farrell et al. (2006).
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exogenous.5 For instance, Hochman, Sexton and Zilberman (2008) study the crowding-out

effect of biofuels on the agricultural sector. They propose a two-country general equilibrium

trade model with energy as intermediate input. In their model, they consider two sources of

energy (fossil and biofuel); both the biofuel and food sectors compete for land and labor.6

Their main results suggest that trade liberalization tends to increase the demand for en-

ergy, which decreases food production and causes losses in forests and other non-agricultural

lands. They also show that neutral technical change in agricultural production, such as

biotechnology and second generation biofuel technologies, mitigates this pressure on land.

Hubert et al. (2008) deal with a related question. They find that backstop technologies will

be adopted earlier than expected in response to high increases in food and petroleum prices.

They also argue that, as a result, either the demand for energy will decrease or petroleum

will be replaced by backstop technologies. Chakravorty et al. (2010), for their part, carry

out a comprehensive empirical analysis of the long-run effects on food prices of United States

and European Union mandatory biofuel mandates, taking into account regional heterogene-

ity in land quality, consumer preferences and population growth. One of their conclusion

is that fears of a large-scale shift from food to biofuel production and its subsequent effect

on food prices may be exaggerated. The issue of competition between land and food has

also been examined in the agricultural economics literature in the context of an exogenous

change in the price of ethanol. Andrade de Sa, Palmer and Engel (2010) study the direct

and indirect impacts of ethanol production on land use, deforestation and food production.

One of their main results is that land competition between rival uses increases deforestation

and decreases food production. Feng and Babcock (2008) examine the effect of the develop-

ment of ethanol on different types of crops. Closer to our model, Chakravorty et al. (2008)

5Chakravorty, Hubert and Nostbakken (2009) conclude that ”most of them focus on the economics of
biofuels supply and in particular address the issue of government policy and how that can affect biofuels
production. A smaller sample of the models explicitly considers environmental impacts from biofuels pro-
duction. A fewer number explicitly consider the role of fossil fuel scarcity and the effect rising prices of
energy may have on the supply of biofuels”.

6In this paper, for simplicity, we consider that only the land resource is shared between food and energy
productions. As a matter of fact, many resources are subject to trade-off between these two sectors. See for
instance Gaudet, Moreaux and Withagen (2006), where water is shared between oil and agriculture.
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propose a centralized Ricardian-Hotelling model with land allocation decisions being decided

by a central planner. In their model, as the exhaustible resource becomes scarcer its price

increases, thereby making biofuels competitive. As a consequence, land shifts out from food

to energy production, which leads to an increase in the price of food. The demand for clean

energy is modeled by introducing an exogenous cap on the carbon stock in the atmosphere,

which leads to a rise in energy prices and speeds up the adoption of biofuels as a backstop.

In the present paper, unlike Hochman et al. (2008) and following Hubert et al. (2008)

and Chakravorty et al. (2008), we study the effects of nonrenewable resource exhaustion

over time as the impetus behind the rising global demand for biofuels, which might have a

perverse effect on ‘food security’. We propose a decentralized partial equilibrium model with

resource dynamics and we consider that the finite land resource is put into two alternative

uses by price-taking farmers: food and biofuel production. We abstract from the issue of

global atmospheric pollution caused by emissions. We model the effects of oil exhaustion on

the supply of biofuels and we study the effects of increased production of biofuel. Finally,

our model accounts for population growth and the effect this has on both oil extraction and

on ‘food security’. This allows us to distinguish the effect of population growth from that of

land use on the price of food. Our main focus is to model the relationship between energy and

food prices which follows from the depletion of fossil fuel (oil for short) and the development

of biofuels as a substitute. Unlike the papers mentioned earlier, we consider a dynamic

framework where the price paths for both energy and food are determined endogenously.

Section 2 presents the model. In Section 3 we solve the farmers’ land allocation problem.

Section 4 is devoted to the oil cartel’s optimal depletion and pricing decisions. Section 5

is devoted to an analysis of the effect on food end energy prices of land productivity. We

conclude in Section 6.
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2 The model

Consider an economy composed of an agricultural sector and an oil sector and of two markets,

one for energy and one for food. The energy market is supplied by farmers, in the form of

biofuel, and by an oil cartel. The market for food is supplied by price-taking farmers.

2.1 The supply sides

The cartel, acting as a dominant firm, extracts fossil fuel and sells it on the energy market.

The finite stock of nonrenewable fossil fuel at date t is S (t). We assume that the stock is

homogeneous. We also assume that the size of the stock is known with certainty and we

abstract from energy storage issues. This stock is depleted at the rate Ef (t), at zero cost,

for simplicity. The evolution of the stock is given by:

Ṡ (t) = −Ef (t) ∀ t. (1)

The total amount of productive land available is also finite. We assume a representative

farmer whose behavior summarizes the production decisions of the mass of all farmers. This

representative farmer owns a parcel of arable land of size L. He has to decide how to allocate

his land between the production of food and the production of biofuel. The food production

of the representative farmer is denoted Q (t) while the amount of biofuel he produces is

denoted Eb (t), measured in oil equivalent. At each date t, the fixed amount of arable land

is allocated between food and biofuel, so that:

La (t) + Lb (t) = L, (2)

where La (t) and Lb (t) stand for the amounts of land allocated respectively to food and

biofuel.

We will assume that one unit of oil, or its equivalent in the form of biofuel, generates one
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unit of energy.7 Therefore, the total supply of energy, E (t), will be:

E (t) = Ef (t) + Eb (t) . (3)

Food output is given by

Q (La (t)) = ALa (t) , (4)

while biofuel output is given by

Eb(Lb (t)) = BLb (t) . (5)

The constants A and B are conversion parameters related to the technology in use. Param-

eter B reflects the (linear) conversion efficiency into biofuel of the biomass produced using

one unit of land.8 We assume that the farmers incur increasing marginal cost of produc-

tion. Specifically, producing Q (La (t)) and Eb (Lb (t)) will cost respectively ca

2
(ALa (t))2 and

cb

2
(BLb (t))2, where ca and cb are positive cost parameters. This formulation of the costs is

equivalent to having decreasing returns to scale.9

2.2 The demand sides

The demand for energy at date t is given by the following:

E (t) = N(t) (p̄e − pe (t)) , (6)

where N(t) is the population at date t and pe (t) is the price of energy. The inverse demand

is thus given by

pe (t) = p̄e − E (t)

N(t)
. (7)

We assume that population grows at a constant rate γ ≥ 0 i.e. N(t) = N0e
γt. The world

demand for food at date t is given by:

Q (t) = N(t) (p̄a − pa (t)) , (8)

7Of course it should be understood that the biofuel production represents here the net energetic equivalent
of the biomass produced by the farmers. Indeed, in order to produce biofuel, fossil energy is required at
various stages (see Rajagopal and Zilberman 2007, p. 34).

8For example, in the case of sugarcane one hectare of land yields 4900 liters of ethanol (see Rajagopal
and Zilberman 2007, p. 102).

9Andrade de Sa, Palmer and Engel(2010) use a Cobb-Douglas production function that exhibits decreasing
returns to scale in both land and labor inputs.
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where pa (t) is the price of food. The parameters p̄e and p̄a represent the choke prices in the

energy and food markets respectively.

3 The farmers’ problem

In this section, we solve the land allocation problem faced by the representative farmer. In

the energy market, farmers act as a competitive fringe vis-a-vis the oil cartel. The energy

price pe (t) is set by the cartel and this price is taken as given by the representative farmer.

The representative farmer also takes as given the price pa(t) in the food market.

The representative farmer maximizes the sum of his food and biofuel profits subject to

the land constraint (2). In other words, at any date t:

max
La(t), Lb(t)

[
pe(t)BLb(t) + pa(t)ALa(t)− cb

2
(BLb(t))

2 − ca

2
(ALa(t))

2
]

subject to La (t) + Lb (t) = L.

Replacing Lb by L − La, the first-order condition for the determination of La can be

written, assuming an interior solution:

pa(t)A− caA
2La(t) = pe(t)B − cbB

2[L− La(t)]. (9)

It says that the allocation of land to food production must be such that it equalizes the

marginal net benefit from allocating land to either of its two usages. From (9) we get the

solution for land allocation to food production as a function of the two prices:

La(pa(t), pe(t)) =
pa(t)A− pe(t)B + cbB

2L

caA2 + cbB2
. (10)

Therefore, recalling (4), food supply is given by

QS(pa(t), pe(t)) = ALa (pa(t), pe(t)) . (11)

It then follows from (2) that

Lb(pa(t), pe(t)) =
pe(t)B − pa(t)A + caA

2L

caA2 + cbB2
, (12)

7



and, from (5), biofuel supply is:

ES
b (pa(t), pe(t)) = BLb(pa(t), pe(t)). (13)

We will assume that

cbB
2L > p̄eB − p̄aA > −caA

2L. (14)

This guarantees that we have an interior solution, so that positive quantities of land will be

allocated to both food and biofuel. Indeed, the full marginal cost of land allocation to biofuel,

given that it can also be used for food production, is cbB
2Lb(t) + pa(t)A− caA

2[L− Lb(t)].

When neither food nor biofuel is produced (Lb = La = 0), this reduces to p̄aA − caA
2L

and assumption (14) guarantees that there exists a positive Lb(t) which equates the full

marginal cost to pb(t)B, the marginal revenue from land allocation to biofuel. Similarly, the

full marginal cost of land allocation to agriculture is caA
2La(t)+pb(t)B−cbB

2[L−La(t)] and,

by the same reasoning, assumption (14) guarantees that the solution for La(t) is interior.

We will assume that the respective full marginal costs at Lb = La = 0 are both nonnegative:

p̄aA − caA
2L ≥ 0 and p̄eB − cbB

2L ≥ 0, which of course means p̄a − caAL ≥ 0 and

p̄e − cbBL ≥ 0 since A and B are both positive.

Given the energy price pe(t) set by the cartel, the market clearing condition, obtained by

equating the demand for food (given by (8)) with the supply of food (given by (11)), yields

the food price as a function of this given energy price:

pa(pe(t)) =
θN(t)p̄a − cbAB2L + ABpe(t)

A2 + θN(t)
. (15)

where

θ = A2ca + B2cb > 0.

For any land allocation La = Lb = `, θ` is the sum of the marginal costs of production of

food and biofuel.

Thus, because of the competition for the limited amount of land between the production

of food and of biofuel, the price of food is linked to the price of energy. As can be seen from

8



(15), at any date t, ceteris paribus the higher the given price of energy, the higher the price

of food.

Using (15), the biofuel supply at any date t can now be rewritten as a function of pe(t)

only:

ES
b (pe(t)) = BLb(pa(pe(t)), pe(t)). (16)

There remains to consider the determination of the energy price by the oil cartel.

4 The oil cartel

Subtracting the farmers’ supply of biofuel (16) from the total energy demand (6) gives the

residual demand faced by the oil cartel:

Ef (pe(t)) = N(t) (p̄e − pe(t))−BLb(pa(pe(t)), pe(t)) (17)

Applying equations (12) and (15) in (17), one can derive the inverse residual demand which

can be written as:

Pe (Ef (t)) = β (t)− α(t)
Ef (t)

N(t)
, (18)

where

α(t) =
A2 + θN(t)

A2 + B2 + θN(t)
> 0 (19)

β (t) = α(t)

{
p̄e +

AB (p̄a − AL[ca − 1/N(t)])

A2 + θN(t)

}
> 0. (20)

Observe that β(t) can be viewed as the time-varying effective choke price for the residual

demand facing the cartel at each date t. Because of the presence of a fringe of biofuel

producers, β(t) is smaller than p̄e, the choke-price of total demand for energy. The cartel

has to set a price that is lower than β(t) if it wants to sell positive amounts of oil. When

pe(t) ≥ β(t), the total demand for energy is met exclusively by the biofuel producers. As

for α(t), it gives the time-variant slope of the residual inverse demand for oil faced by the

cartel.
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It can be directly established from (19) that α(t) is increasing over time if population

is growing and that lim
t→+∞

α(t) = 1. As for β(t), its time derivative is given by β̇(t) =

(∂β/∂N)Ṅ(t), where

∂β

∂N
=

B [(A4 + A2B2 + 2θA2N)L + (Bp̄e − Ap̄a + caA
2L)θN2]

(N(t))2 [A2 + B2 + θN(t)]2
. (21)

The right-hand side of (21) is positive, since, from (14), Bp̄e − Ap̄a + caA
2L > 0. Therefore

β(t) also increases over time as long as population is growing and lim
t→+∞

β(t) = p̄e. Note that

the residual demand for energy converges asymptotically to the total demand for energy.

We will assume that N0 > Ñ , where Ñ is the positive root of β(0) = 0, so that β(t) > 0

for all t ≥ 0. Since by assumption the marginal cost of oil production is zero, this guarantees

that oil production will be positive from the outset.

Given the inverse residual demand, the oil cartel chooses its oil production path and the

date of exhaustion of its oil stock so as to maximize its discounted flow of profits:

max
Ef (t), T

∫ T

0

e−rt

(
β (t)− α(t)

Ef (t)

N(t)

)
Ef (t) dt

subject to:

Ṡ (t) = −Ef (t) ,

Ef (t) ≥ 0,

S (0) = S0 and S(T ) ≥ 0 .

The Hamiltonian of the problem is:

H (Ef (t) , λ (t) , t) = e−rt

(
β (t)− α(t)

Ef (t)

N(t)

)
Ef (t) − λ (t) Ef (t)

and the following conditions are necessary for optimality:

β(t)− 2α(t)
Ef (t)

N(t)
− ertλ(t) ≤ 0,

(
β(t)− 2α(t)

Ef (t)

N(t)
− ertλ(t)

)
Ef (t) = 0 (22)

λ̇ (t) = 0 (23)

Ṡ (t) = −Ef (t) (24)

10



(
β(T )− α(T )

Ef (T )

N(T )
− erT λ(T )

)
Ef (T ) = 0 (25)

λ (T ) ≥ 0 and λ (T ) S(T ) = 0. (26)

The Hamiltonian being concave in the control variable Ef (t), linear in λ(t) and independent

of the state variable S(t), conditions (22) to (26) are also sufficient for optimality.

Condition (22) says that, if at any date t extraction is positive, the profit derived from

the marginal barrel of oil must be equal to its current in situ value, ertλ(t).

From (23), we have that λ(t) = λ(0) = λ̄ for all t ∈ [0, T ]. The current shadow value of

in situ oil therefore grows at the rate of interest, so that no profitable arbitrage is possible

with respect to the stock of oil.

The transversality condition (25) states that the value of marginally delaying the terminal

date T , which is given by the Hamiltonian evaluated at T , must be zero. Notice that for

any values of Ef (T ) 6= 0, conditions (22) and (25) cannot both hold at the terminal date T .

Therefore the optimal rate of extraction at T must be zero: Ef (T ) = 0.

The transversality condition (26) states that the value of the remaining stock at the

terminal date T must be zero, either because λ(T ) = λ̄ = 0, or S(T ) = 0, or both. But

λ̄ = 0 would, from (22), contradict the fact that β(T ) > 0. It follows that λ̄ > 0 and

S(T ) = 0: the oil stock will be exhausted. Since the choke price is finite, this will occur in

finite time.

Recalling that N(t) = eγtN0, exhaustion of the stock means that:

∫ T

0

β(t)− λ̄ert

2α(t)
eγtdt =

S0

N0

. (27)

This, along with

λ̄ = e−rT β(T ), (28)

uniquely determines λ̄ and T as functions of the per-capita initial oil stock, S0/N0. For

instance, in the case where population is constant, that is γ = 0, N(t) = N0, and hence

β(t) = β, independent of time, substituting for λ̄ from (28) into (27), we find that T is given
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by:

rT + e−rT =
2αr

β

S0

N0

+ 1. (29)

The solution for λ̄ then follows from (28).

The cartel’s oil extraction path is therefore given by:

Ef (t) =
β(t)− λ̄ert

2α(t)
N(t) ∀t ∈ [0, T ], (30)

where λ̄ and T are the solutions for the shadow price of oil and the date of exhaustion of the

stock in terms of S0/N0.
10 Hence, recalling (18), the evolution of the price of energy over

time will be given by:

pe(t) = β(t)− α(t)
Ef (t)

N(t)
=





β(t) + λ̄ert

2
∀ t ∈ [0, T ]

β(t) ∀ t ∈ [T,∞).

(31)

Since both β(t) and ertλ are increasing functions of time, the price of energy rises con-

tinuously over time. At date T , erT λ̄ = β(T ), so that pe(T ) = β(T ) < p̄e and the stock

of oil is exhausted. From date T on, energy demand is supplied exclusively by the biofuel

producers, with its market price equal to β(t) and tending asymptotically to p̄e, as long as

the population is growing. If the population is constant, then so is β(t) and so will be the

price of energy for all t > T . In all cases however, because the presence of the biofuel fringe

lowers the price leader’s effective choke price, the oil cartel will choose to exhaust its stock

before price reaches p̄e and hence will exhaust its stock of oil sooner than it would in the

absence of the fringe. The switch at T from energy being supplied from both oil and biofuel

to biofuel only results in a downward jump in the rate of change of the price of energy at T

and hence a kink in its time path. This is illustrated in the top graph of Figure 1.

As for the rate of oil extraction by the cartel, although it must eventually be decreasing

to reach zero at T , it cannot be ruled out that it be increasing at the beginning, as illustrated

in the bottom graph of Figure 1. Differentiating (31) with respect to time, we find that:

Ėf (t) =
(β̇(t)− rertλ̄)N(t) + (β(t)− ertλ̄)Ṅ(t)

2α(t)
− (β(t)− ertλ̄)N(t)α̇(t)

2α(t)2
. (32)

10The result of exhaustion in finite time is robust even to a change in the oil industry structure: the only
difference being that the cartel is more conservationist than a fully competitive oil industry.
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Figure 1: Optimal energy pricing and oil extraction by the cartel

Since the second term is positive, for Ef (t) to be increasing the first term must also be

positive. Therefore, in order for oil production to be increasing over some initial interval of

time, it is necessary, though not sufficient, that:

(
β̇(0)− rλ̄

)
N0 +

(
β(0)− λ̄

)
γN0 > 0. (33)

In the particular case of a constant population (γ = 0), we have β̇(t) = 0 for all t and

13



the necessary condition (33) cannot be satisfied. Therefore, if the population is constant,

the production of energy from fossil fuel will be at its maximum at t = 0 and will decrease

from thereon until it reaches zero at t = T . By continuity, the same will be true for some

small values of γ.

As for the equilibrium price path of food, substituting for pe(t) from (31) into (15), it

can be written:

pa(t) =





θp̄aN(t) + (AB/2)(β(t) + λ̄ert)− AB2Lcb

A2 + θN(t)
∀t ∈ [0, T ]

θp̄aN(t) + (AB/2)β(t)− AB2Lcb

A2 + θN(t)
∀t ∈ [T,∞).

Differentiating with respect to time, its evolution over time can be written:

ṗa(t) =





[
∂pa

∂N
+

1

2

∂pa

∂pe

∂β

∂N

]
Ṅ(t) +

1

2
rλ̄ert ∂pa

∂pe

∀t ∈ [0, T ]

[
∂pa

∂N
+

1

2

∂pa

∂pe

∂β

∂N

]
Ṅ(t) ∀t ∈ [T,∞).

(34)

As already pointed out, ∂pa/∂pe is positive, from (15). Therefore the second term in the

top expression is positive. Also, as established from (21), ∂β/∂N is positive. As for ∂pa/∂N ,

it is given by:

∂pa

∂N
=

θ[(θ{N(t)− 1})p̄a + A2p̄a − ABpe(t) + cbAB2L]

[A2 + θN(t)]2

≥ θA[Ap̄a −Bp̄e + cbB
2L]

[A2 + θN(t)]2
> 0 (by assumption (14)).

Therefore the price of food is continuously increasing if the population is growing, as il-

lustrated in Figure 2. It will grow at a faster rate for t < T , while the oil stock is being

depleted, than for t > T , when the only source of supply of energy is biofuel, with a kink in

the path occurring at T . If population is constant, it will grow until T and become constant

afterwards.

For all t > T , the farmers will be the sole suppliers of both the food and the energy

market. The equilibrium prices can then be determined using the solution to the farmers’

14



Pa

Pa

Pa(0)

T t0

Figure 2: The food price path

land allocation problem of Section 3 and the market clearing conditions. We will have pa(t) =

pa(pe(t)) given by (15), but with pe(t) = β(t). The price of food will tend asymptotically to

p̄a, while the price of energy tends asymptotically to p̄e. In the case of a constant population,

both of those prices would be constant beyond T , both smaller than their respective choke

price.

5 The effects of land productivity on equilibrium prices

It is interesting now to look at the effect on the price paths of energy and food of improving

the land use in either biofuel and food production by changing the productivity parameters

B and A. As will become clear, the effect will remain ambiguous, for two reasons: because

of the fixed stock of oil available and because of the interaction between the two markets due

the sharing of the fixed land area available. We will assume for this purpose that population

is constant and will normalize by setting N = 1. N being constant, so will α and β.

Consider first the effect on the equilibrium price of energy, pe. From (29) we verify that:

∂T

∂x
=

∂T

∂ (α/β)

∂ (α/β)

∂x
=

2S0

1− e−rT

α
β

[ξαx − ξβx]

x
, x = A,B (35)
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where

ξzx =
∂z

∂x

x

z
, z = α, β

denote the responsiveness (elasticities) of the endogenous choke price and slope of the residual

demand curve faced by the oil cartel. Whether a change in the parameters A or B will result

in an increase or decrease in the date of exhaustion of the oil stock will depend crucially on

those responsiveness, as can be seen from (35).

Differentiating (19) with respect to A and B it is easily established that ∂α/∂A > 0 and

∂α/∂B < 0, so that ξαA > 0 and ξαB < 0. Therefore, if increasing A were to leave the

choke price β unchanged or reduce it (ξβA ≤ 0), thus resulting in a new residual demand for

oil which lies everywhere below the old one,11 the effect would be to delay the exhaustion

of the oil stock. Similarly, if increasing B were to leave the choke price β unchanged or

increase it (ξβB ≥ 0), thus resulting in new residual demand for oil which lies everywhere

above the old one, the effect would be to accelerate the exhaustion of the oil stock. In such

cases, the new time path of pe will necessarily cross the old one, since having the new path

either everywhere below or everywhere above the old one would be inconsistent with the

given initial stock of oil. In the case of an increase in A with ξβB ≥ 0, the new path will

cut the old one from above at some date τ < T , so that for t < τ the price of energy will

have increased while for t > τ it will have decreased. In the case of an increase in B with

ξβB ≥ 0, the new path will cut the old one from below at some date τ < T , with the result

that pe will have decreased for all t < τ and increased thereafter.12

As shown in the Appendix, the signs of ξβA and of ξβB are in fact indeterminate. If

ξβA > 0 and sufficiently large to have ξαA − ξβA < 0, then the effect of an increase in A will

be to exhaust the oil stock earlier. The new residual demand faced by the cartel then lies

11The residual demand will then lie everywhere below the old one since both β and β/α are then reduced,
β/α being the level of demand of oil that corresponds to pe = 0. Notice that ξ(β/α)x = ξβx− ξαx = −ξ(α/β)x.

12In this last case, measures aimed at improving the productivity of land in biofuel production actually
result in an acceleration in the use of oil, a phenomenon which might be viewed as a form the “Green Para-
dox”, a phenomenon first emphasized by Sinn (2008) and subsequently analyzed by Grafton, Kompas and
Long (2010), Ploeg and Withagen (2010) and Smulders, Tsur and Zemel (2010), among others. Chakravorty
et al. (2010) also note this phenomenon in their analysis of the long-run effect of biofuel mandates on food
prices.
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everywhere above the old one. Similarly, if ξβB < 0 with ξαB − ξβB > 0, then an increase

in B will retard the date of exhaustion of the oil stock, the oil cartel’s new residual demand

lying everywhere below the old one. In both of those cases, the new time path of the price

of energy will again necessarily cut the old one, from below in the first case and from above

in the second case. Thus, in the first case, an increase in A now results in a lower pe up to

some date τ at which the old and the new price paths cross, and a higher pe thereafter. In

the second case, the reverse is true for an increase in B.

There remains the possibility that ξβA > 0 but still ξαA−ξβA > 0, with the result that the

new residual demand faced by the oil producer will necessarily cut the old one from above

at some positive price level. In this case, and only in this case, it becomes possible for the

new price path of energy to be everywhere above the old one subsequent to an increase in A.

Similarly, it is possible to have ξβB < 0 with ξαB− ξβB < 0, so that the new residual demand

curve cuts the old one from below at some positive price level, in which case an increase in

B may leave the new price path of energy everywhere below the old one.

That the price paths may cross subsequent to improvements in land use in either food

or biofuel production is due to the fact that the available oil stock is fixed. That it is not

possible to predict analytically whether the new price path will cut the old one from below

or from above, or maybe not at all, is due to the interaction between the market for food and

the market for energy, which partly share the fixed availability of agricultural land. Hence

there is no definite analytical answer as to the effect on the price of energy. In fact, as shown

in the Appendix, the effects of A and B on the equilibrium price of energy at any date t are

given by:

∂pe

∂A
=

∂pe

∂A

∣∣∣∣
Ef≡0

−
(

2A(ca + 1)

A2 + B2 + θ

)
Ef −

(
AB

A2 + B2 + θ

)
∂Ef

∂A
(36)

∂pe

∂B
=

∂pe

∂B

∣∣∣∣
Ef≡0

−
(

2B

A2 + B2 + θ

)
Ef −

(
A2 + θ

A2 + B2 + θ

)
∂Ef

∂B
, (37)
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where

∂pe

∂A

∣∣∣∣
Ef≡0

=
Bp̄a + 2A(ca + 1)[p̄e − pe −BL]

A2 + B2 + θ
(38)

∂pe

∂B

∣∣∣∣
Ef≡0

=
Ap̄a + 2B(cb + 1)[p̄e − pe]− 2Bpe − A2L(ca + 1)

A2 + B2 + θ
(39)

are the effects on the equilibrium price of energy when energy supply depends entirely on

biofuel production. The price pe is the equilibrium price (see Appendix) and Ef is given by

(30) with λ̄ given by (28) and T by (29).13

For t > T the oil stock is completely depleted and biofuel becomes the only source of

energy. Hence the effects of A and B on the price of energy are reduced to (38) and (39).

Clearly p̄e − pe > 0, while p̄e − pe − BL < 0 since in equilibrium p̄e − pe − BLb − Ef = 0,

so that p̄e − pe − BL = −BLa < 0 when Ef = 0, as in the static equilibrium that occurs

for t > T . Hence, even in a static framework where all energy is obtained from biofuel,

the direction of the effects on the price of energy of improving the productivity of land in

either food or biofuel production is ambiguous, being crucially dependent on the value of the

parameters. This is due to the complex interaction between the food and the energy markets

that results from their sharing of the available land. When we add to this ambiguity the

fact that for t < T the new and the old price paths of energy can cross, it is to be expected

that the directions of those effects cannot be uniquely determined analytically.

Not surprisingly, much the same ambiguity will hold for the price of food as does for the

price of energy, and for the similar reasons. The effects of the parameters A and B on the

equilibrium price of food at any date t are given (see Appendix) by:

∂pa

∂A
=

∂pa

∂A

∣∣∣∣
Ef≡0

−
(

B

A2 + B2 + θ

)
Ef −

(
AB

A2 + B2 + θ

)
∂Ef

∂A
(40)

∂pa

∂B
=

∂pa

∂B

∣∣∣∣
Ef≡0

−
(

A

A2 + B2 + θ

)
Ef −

(
AB

A2 + B2 + θ

)
∂Ef

∂B
, (41)

13Recall that since N(t) is constant and normalized to one, α and β are independent of time.
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where

∂pa

∂A

∣∣∣∣
Ef≡0

=
Bp̄e + 2A(ca + 1)(p̄a − pa)− 2Ap̄a −B2(cb + 1)L

A2 + B2 + θ
(42)

∂pa

∂B

∣∣∣∣
Ef≡0

=
Ap̄e + 2B(cb + 1)[p̄− pa − AL]

A2 + B2 + θ
(43)

with the price pa being the equilibrium price (see Appendix) and Ef being given by (30)

with λ̄ given by (28) and T by (29).

Again, even when the supply of energy depends entirely on biofuel production, as is the

case for t > T , the effects of improving the productivity of land use in either food or biofuel

production are ambiguous, because of the common land constraint faced by food and biofuel

production which indirectly links those two otherwise independent markets. Indeed, p̄a− pa

being positive and p̄ − pa − AL being negative, the signs of both (42) and (43) depend on

value of the parameters. An analytical determination of the directions of those effects for

all t is made all the more difficult by the fact that the price path of energy for t < T can

respond in various ways, depending again on the values of the parameters.

6 Concluding remarks

The object of this paper has been the study of the effects on the food sector of the recent

development of biofuels as a substitute for fossil fuel in the supply of energy. We have shown

how competition for the finite land resource, which takes place between biofuel and food

production, explicitly defines a relationship between the energy price and the food price.

The rate of depletion of the oil stock may at first increase if population is growing, but

it will eventually decrease to zero as the stock gets exhausted. The price of energy will

however increase continuously while the stock of oil is being depleted, due to the decline of

the remaining per capita stock of oil, and this whether population is growing or constant. If

population is growing, it will keep increasing after biofuel becomes the only source of energy.

As for the food price, it is also increasing. Two effects account for this growth in the

price of food. Firstly, the increase in the energy price raises the opportunity cost of the
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use of land for food production, creating an incentive for farmers to reallocate their land

in favor of biofuel production. Secondly, population growth increases the demand for food,

thus pushing upwards the equilibrium price in the food market.

Although the effect on the price path of food of introducing competition for land between

food and biofuel productions is clear, it is not so clear whether investing in productivity

enhancing measures in the agricultural food sector, as advocated by the UN secretary general

during the 2008 food summit, would alleviate the effect of biofuel production on food prices.

What the effect of such productivity measures might be turns out to depend in a complex

manner on the various parameters involved in the competition for land between the food and

biofuel sectors and in the competition on the energy market between the biofuel and fossil

fuel sectors: it may or may not alleviate the pressure on food prices, as it may alleviate it in

the short term but not in the long term, or vice-versa. Hence the matter remains an entirely

empirical one, but an empirical one which certainly deserves further investigation given its

importance for the so-called “food security” issue.

Others might want to emphasize the “energy security” issue and hence focus on improve-

ments in land use in the biofuel sector as a means of generating lower energy prices. Again,

for much the same reasons, the effects of such measures on the price of energy, or for that

matter on the price of food, are unclear from a purely analytical stand point and would need

careful empirical investigation to determine the likely effects of implementing such measures.
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Appendix

A The effects of varying A and B on α and β

Assuming N constant and normalized to one, and differentiating (19), we find that:

∂α

∂A
=

2AB2(ca + 1)

A2 + B2 + θ
> 0

and

∂α

∂B
= −2A2B(ca + 1)

A2 + B2 + θ
< 0.

Differentiating (20) with respect to A, we get:

∂β

∂A
=

β

α

∂α

∂A
+ α

B

?︷ ︸︸ ︷
{p̄a − 2AL[ca − 1]}−2A(ca + 1)

>0︷ ︸︸ ︷(
β

α
− p̄e

)

A2 + θ

=
β

α

∂α

∂A
+ α

∂(β/α)

∂A
.

The sign of the second term being indeterminate, so is the sign ∂β/∂A.

Similarly, differentiating (20) with respect to B, we get:

∂β

∂B
=

β

α

∂α

∂B
+ α

A

>0︷ ︸︸ ︷
{p̄a − AL[ca − 1]}−2Bcb

>0︷ ︸︸ ︷(
β

α
− p̄e

)

A2 + θ

=
β

α

∂α

∂B
+ α

∂(β/α)

∂B
.

Again, the sign of the second term is indeterminate and hence so is that of ∂β/∂B. The

expression p̄a−AL[ca−1] is positive, since p̄a−ALca is positive by assumption (see page 8).
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B The effects of varying A and B on the equilibrium prices

Assuming N constant and normalized to one, the equilibrium (pa, pe, La, Lb, Ef , T ) is the

solution to the following system of six equations:

From (9): Apa −Bpe − [A2ca + B2cb]La + B2cbL = 0 (44)

From (2): La + Lb = L (45)

From (4) and (8): p̄a − pa − ALa = 0 (46)

From (3), (5) and (6): p̄e − pe −BLb =

{
Ef for t ≤ T
0 for t > T

(47)

From (30) and (28): Ef =





(
β

α

)(
1− e−r(T−t)

2

)
for t ≤ T

0 for t > T
(48)

From (29): rT + e−rT =

(
α

β

)
2rS0 + 1 (49)

Using equations (45) and (46) to eliminate La and Lb, we find that (44) and (47) become:

(A2 + θ)pa − ABpe = θp̄a − AB2cbL

Bpa + Ape = Bp̄a + A[p̄e −BL− Ef ].

Upon solving for (pa, pe), we get:

pa =
(B2 + θ)p̄a + ABp̄e − AB2L(ca + 1)

A2 + B2 + θ
− AB

A2 + B2 + θ
Ef

pe =
(A2 + θ)p̄e + ABp̄a − A2BL(ca + 1)

A2 + B2 + θ
− A2 + θ

A2 + B2 + θ
Ef ,

where Ef and T are to be determined from equations (48) and (49). In both of those

equations the first term represents the equilibrium price when all energy is supplied from

biofuel, which is the case for t > T , the oil stock being then fully depleted. Those first terms

can be usefully denoted respectively pa|Ef≡0 and pe|Ef≡0.

Differentiating the above two equilibrium prices with respect to A and B then yields

(36), (37), (40) and (41).
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