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(gerard.gaudet@umontreal.ca)

Pierre Lasserre
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Abstract

Uncertainties as to future supply costs of nonrenewable natural resources, such as oil and gas,
raise the issue of the choice of supply sources. In a perfectly deterministic world, an efficient use
of multiple sources of supply requires that any given market exhausts the supply it can draw
from a low cost source before moving on to a higher cost one; supply sources should be exploited
in strict sequence of increasing marginal cost, with a high cost source being left untouched as
long as a less costly source is available. We find that this may not be the efficient thing to do
in a stochastic world. We show that there exist conditions under which it can be efficient to
use a risky supply source in order to conserve a cheaper non risky source. The benefit of doing
this comes from the fact that it leaves open the possibility of using it instead of the risky source
in the event the latter’s future cost conditions suddenly deteriorate. There are also conditions
under which it will be efficient to use a more costly non risky source while a less costly risky
source is still available. The reason is that this conserves the less costly risky source in order to
use it in the event of a possible future drop in its cost.

Keywords: Security of supply; Uncertainty, Nonrenewable resources; Order of use
J.E.L. classification: Q310, D810, D900.

Résumé

L’incertitude sur le coût futur d’une ressource non renouvelable telle le pétrole ou le gaz pose
la question du choix des sources d’approvisionnement. Dans un monde déterministe l’utilisation
efficace de sources multiples exige que tout marché épuise une source de coût relativement faible
avant de passer à une source de coût plus élevé ; l’utilisation des sources d’approvisionnement
doit se faire strictement par ordre de coût marginal croissant ; on ne touchera à aucune source
de coût élevé tant qu’existe une source moins coûteuse. Nous montrons que cette règle n’est
pas forcément efficace en univers stochastique. Il existe des conditions sous lesquelles il peut
être efficace de recourir à une source risquée pour conserver une ressource moins coûteuse non
risquée. Une telle stratégie permet de se réserver la possibilité d’utiliser cette dernière au cas
où les conditions d’accès à la source risquée se déterioreraient subitement. Il existe également
des conditions sous lesquelles il sera efficace d’utiliser une source plus coûteuse mais non risquée
alors qu’une source risquée mais meilleur marché est toujours disponible. Dans ce cas il s’agit
d’économiser la source bon marché dans l’éventualité d’une baisse possible de son coût, qui la
rendrait encore plus intéressante.

Mots-clés : Sécurité d’approvisionnement ; Incertitude ; Ordre d’utilisation.
Classification J.E.L. : Q310, D810, D900.



1 Introduction

In a period of high geopolitical risks, the question of the security of supply of nonrenewable

natural resources, such as oil and gas, becomes a matter of particular concern for decision

makers. The presence of significant uncertainties as to future supply costs raises the issue

of the choice of supply sources in order to assure, at a cost, a certain degree of supply

independence. One can think, for instance, of imports from a foreign source as being more

prone to sudden supply disruptions than is the supply from a domestic source. The decision

then becomes whether to use up the risky foreign supply in order conserve the safe domestic

one, or whether to leave the risky supply source for future use and use the domestic source

now. Evidently this will depend on the relative current costs, but also on what is foreseen

for the future.

The issue of supply independence is obviously not relevant in a world of perfect certainty.

In a perfectly deterministic world, an efficient use of multiple sources of supply requires that

any given market exhaust the supply it can draw from a low cost source before moving on to

a higher cost one. Hence, supply sources should be exploited in strict sequence of increasing

marginal cost, with a high cost source being left untouched as long as a less costly source is

available.1 Given a positive discount rate, it makes sense to want to delay the high cost as

much as possible in such a world.

The question arises as to what extent this principle remains valid in a world where future

supply is subject to uncertainty. For instance, faced with the choice between two sources of

supply, one of whose supply cost is stochastic, should the currently more expensive source

necessarily be avoided as long as the other source is still available, if this more expensive

source also happens to be the risky one? What if the risky source is the currently less

expensive one? Should it then necessarily be used up before any use is made of the more

1This is sometimes referred to as the Herfindahl principle (Herfindahl 1967). For extensions of this
principle to account for set-up costs, for general equilibrium issues or for spatial considerations, see Hartwick,
Kemp and Long (1986), Kemp and Long (1980), Amigue, Favard, Gaudet and Moreaux (1998), Gaudet,
Moreaux and Salant (2001).
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costly non risky source? Those are the type of questions we investigate in this paper.

We will assume that the decision maker has at any given time a choice between supplying

from a source whose future cost is known with certainty — a domestic source, maybe — and

a source whose cost, although currently known, is subject to future disruption — a foreign

source, for example. More specifically, we assume that the supply cost from the risky source

can be, at any given time, in one of two states: a favorable state, in which it is low, and an

unfavorable state, in which it is high. When it is currently low, there is a known probability

that it will suddenly jump up in the future to its high level. When it is currently high, there

is a known probability that it will suddenly return to its low level in the future. When its

cost is low and the alternative source happens to be available at an even lower cost, then, in

a deterministic world, you would want to use up the alternative source first. Similarly, when

its cost is high and the cost of the alternative source is even higher, then, in a deterministic

world, you would want to conserve all of the alternative source for later use. We find that

this may not be the efficient thing to do in a stochastic world. In the first case, we show that

there exist conditions under which it can be efficient to use some of the risky supply source

in order to conserve the cheaper non risky source. The benefit of doing this comes from the

fact that it leaves open the possibility of using it instead of the risky source in the event the

latter’s future cost conditions suddenly deteriorate. In the second case, we show that there

are conditions under which it will be efficient to use the more costly non risky source while

the risky source is still available. The reason why this might be efficient is that it conserves

the less costly risky source in order to use it instead in the event of a possible future drop

in its cost.

The next section is devoted to the derivation of conditions that must hold for the con-

sumption path to be efficient. From those efficiency conditions we formulate, in Section 3,

general decision criteria for the order of use of the two supply sources. In Section 4 we then

derive explicit conditions on the parameters in order for it to be optimal to use the high

cost supply source, which may be the risky source or the non risky one, while the low cost
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one is still available. Section 5 is devoted to a brief look at some special cases. We discuss

there the particular case where the non risky source is an artificially constituted reserve as

opposed to a natural deposit, the case of a complete embargo on supply, and the restrictions

to treating the problem in a certainty equivalent form. We conclude in Section 6.

2 The efficiency conditions

Assume there are at date t two potential sources of supply of the resource, from deposits

of size X1(t) and X2(t). The two sources of supply are perfect substitutes in consumption.

The unit cost of drawing from deposit 1 is known with certainty to be c1 > 0. The unit cost

from deposit 2, c2(t), is stochastic. It can take either the value c2 > 0 or c2 + m, m > 0,

with:

c2 (t + dt) =


c2 + m with probability λdt
c2 with probability 1− λdt

}
when c2 (t) = c2

c2 with probability γdt
c2 + m with probability 1− γdt

}
when c2 (t) = c2 + m

(1)

where 0 < λdt, γdt < 1. Thus, when the current supply cost from deposit 2 is low (c2(t) = c2),

there is a probability λdt that it will jump up to c2 + m over the interval dt. On the other

hand, when the current supply cost from deposit 2 is high (c2(t) = c2 + m), there is a

probability γdt that it will revert to c2 over the interval dt.

An efficient supply policy (x1(t), x2(t)) is then one that maximizes:

Et

∫ ∞

t

e−rs [U(x1(s) + x2(s))− c1x1(s)− c2(s)x2(s)] ds (2)

subject to (1) and to:

Ẋi(s) = −xi(s), i = 1, 2 (3)

xi(s) ≥ 0, Xi(0) = Xi0, i = 1, 2 (4)

where r is the rate of interest, rate at which the instantaneous net benefits are discounted.

It is assumed that the gross benefit function satisfies U ′ > 0, U ′′ < 0 and U ′(0) = ∞. Under

those assumptions, some positive amount of the resource will be consumed at any given
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time unless both deposits are exhausted. It also follows from those assumptions that both

deposits will be physically exhausted, possibly in infinite time. If a deposit is exhausted in

finite time, the date at which this will occur is stochastic, because c2(t) is.

Define

V (X1(t), X2(t), c2(t)) = max
x1(s),x2(s)

Et

∫ ∞

t

e−r(s−t) [U(x1(s) + x2(s))− c1x1(s)− c2(s)x2(s)] ds,

(5)

which is the value function expressed in current value at t.2 Then the Bellman equation

associated with this stochastic optimization problem is:3

rV (X1(t), X2(t), c2(t)) = max
x1(t),x2(t)

{U(x1(t) + x2(t))− c1x1(t)− c2(t)x2(t) (6)

−VX1(X1(t), X2(t), c2(t))x1(t)− VX2(X1(t), X2(t), c2(t))x2(t)

+E{∆V |c2(t)}}

where

E{∆V |c2(t)} =

 λ[V (X1(t), X2(t), c2 + m))− V (X1(t), X2(t), c2)] if c2(t) = c2

γ[V (X1(t), X2(t), c2))− V (X1(t), X2(t), c2 + m)] if c2(t) = c2 + m.

The maximization of the right-hand side requires, for i = 1, 2:

U ′(x1(t)+x2(t))−ci(t)−VXi
≤ 0, [U ′(x1(t)+x2(t))−ci(t)−VXi

]xi(t) = 0, xi(t) ≥ 0. (7)

Thus if a positive supply is being drawn from deposit i at date t, then the marginal benefit

derived from making use of this resource flow must be equal to the full marginal cost of

producing it, which is the sum of ci(t), the marginal cost of extracting it, and VXi
, the

marginal value foregone by consuming it today rather than keeping it for future consumption.

The two sources being perfect substitutes and the full total cost being linear, this max-

imization implies that a source will never be used, at any given date, if its full marginal

2Note that V (X1(t), X2(t), c2(t)) depends only on the current state and not on the current date t, the
problem being time autonomous.

3This formulation of the Bellman equation makes use of the generalized Itô formula for jump processes.
See Brock and Maliaris (1982), pages 122–124.
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cost at that date is higher than that of the other source. Therefore, as long as the two full

marginal costs differ, we will have, at any given date t, either x1(t) > 0 and x2(t) = 0, or

x2(t) > 0 and x1(t) = 0, or x1(t) = 0 and x2(t) = 0 if both deposits are exhausted.4

In addition to condition (7), the following intertemporal efficiency condition is also nec-

essary, for any positive interval of time ∆t:

e−r∆tE{VXi
(X1(t + ∆t), X2(t + ∆t), c2(t + ∆t)} − VXi

(X1(t), X2(t), c2(t)) = 0. (8)

To see this, first consider a small interval of time dt and calculate e−rdtE{VXi
(X1(t +

dt), X2(t + dt), c2(t + dt)} by expanding around (dt = 0, X1(t), X2(t), c2(t)), for both c2(t) =

c2 + m and c2(t) = c2, to verify (see Appendix) that, for i = 1, 2:

e−rdtE{VXi
} − VXi

=



when c2(t) = c2 :

{λ[VXi
(X1(t), X2(t), c2 + m))− VXi

(X1(t), X2(t), c2)]
−rVXi

(X1(t), X2(t), c2)
−VXiXi

(X1(t), X2(t), c2)xi(t)}dt

when c2(t) = c2 + m :

{γ[VXi
(X1(t), X2(t), c2))− VXi

(X1(t), X2(t), c2 + m)]
−rVXi

(X1(t), X2(t), c2 + m)
−VXiXi

(X1(t), X2(t), c2 + m)xi(t)}dt.

(9)

But differentiating the Bellman equation (6) totally with respect to Xi, we find that the right-

hand side of (9) must be zero in both cases (see Appendix). Therefore e−rdsE{VXi
} = VXi

at

any date s ∈ [t, t + ∆] and, consequently, the same is true over the entire interval of arbitrary

length ∆t. It follows that (8) must hold along an optimal path.

The arbitrage condition (8) is Hotelling’s rule (Hotelling 1931). It says that the dis-

counted expected marginal valuation of each resource stock must be constant. In other

words, the expected marginal valuations must be growing at the rate of interest.

It is well known that in the absence of uncertainty, the efficient use of the two resource

deposits would require that they be used in strict sequence, with the lower cost supply source

4Under certainty, if U ′(0) = ∞, as assumed, there will always be at least one of the deposits available,
since it would be optimal to take an infinite time to fully exhaust the resource. Whether this remains the
case under uncertainty is not the focus of this paper and is of no consequence for its results.
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being completely depleted before moving on to the higher cost one (Herfindahl 1967). For

instance, if c1 < c2 and both are known with certainty, then no use will be made of supply

source 2 until supply source 1 is exhausted. To see this, first notice that if both supply sources

are to be used, then it must be the case that VX1(X1(0), X2(0)) > VX2(X1(0), X2(0)), for

otherwise the full marginal cost of using source 2 would always be higher than the full

marginal cost of using source 1, implying, by condition (7), that source 2 would never be

used. But since along an efficient path both VX1 and VX2 are growing at the rate r > 0

in order to satisfy the equivalent of condition (8) in the absence of uncertainty, there must

come a time, say t = τ , when c1 + erτVX1(X1(0), X2(0)) = c2 + erτVX2(X1(0), X2(0)). For all

t > τ , the full marginal cost of source 2 will be lower than that of source 1 and, by condition

(7), only source 2 should be used; for all t < τ , the full marginal cost of source 1 will be

lower than that of source 2, and only source 1 should be used. Since both deposits must be

physically exhausted, τ must be the date at which source 1 is fully depleted and source 2

takes over.

The question that now arises is the following: If there is uncertainty of the type postulated

in (1) about the future cost of supplying from source 2, does efficiency still dictate that the

two sources be used in strict sequence? For instance, if c1 < Ec2, should we refrain from

using supply source 2 as long as supply source 1 is still available? It turns out that this is not

the case. In what follows, we show that there are conditions on the parameters under which

it will be efficient to make use of deposit 2 before deposit 1 is exhausted even if c1 < c2,

so a fortiori even if c1 < Ec2. In fact, it may even turn out to be optimal to exhaust the

supply from the higher cost source 2 before source 1 is used up. This does not depend on

whether the costlier deposit is the uncertain one or not. Indeed, we also show that even if

c1 > c2 + m, so a fortiori even if c1 > Ec2, it may be efficient under some circumstances

to begin using deposit 1 before deposit 2 is used up. Again, it will possibly be optimal to

completely exhaust supply source 1 before the less costly supply source 2 is used up.
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3 The efficient order of use

Consider first a supply policy such that the non risky source 1 is being used at t and will be

exhausted at some time t+∆t. Suppose furthermore that at t+∆t the risky supply source 2

takes over. Therefore the supply policy is characterized by x1(t) > 0 and x2(t + ∆t) > 0.

Notice that ∆t may be stochastic, because the policy followed between t and t + ∆t may

depend on c2(s) for s > t. However, whatever the value of ∆t, consider the following

arbitrage:

1. reduce the quantity supplied from X1 by one unit at t and increase it by one unit at

t + ∆t.

2. reduce the quantity supplied from X2 by one unit at t+∆t and increase it by one unit

at t.

This is feasible and leaves the total consumption path of the initial policy unchanged. The

expected change in the total cost of that consumption path, conditional on ∆t and c2 (t), is:

∆C = c2 (t) + VX2 (X1(t), X2(t), c2 (t))

+e−r∆t [c1 + E {VX1 (0, X2(t + ∆t), c2 (t + ∆t)) |c2 (t) , ∆t}]

− [c1 + VX1 (X1(t), X2(t), c2 (t))

+e−r∆tE {c2 (t + ∆t) + VX2 (0, X2(t + ∆t), c2 (t + ∆t)) |c2 (t) , ∆t}
]
.

Since the intertemporal arbitrage condition (8) must hold for both supply sources along an

optimal path, this reduces to:

∆C = (c2 (t)− c1)− e−r∆t[(c2(t)− c1) + E {∆c2| c2 (t) , ∆t}], (10)

where

E {∆c2| c2 (t) , ∆t} ≡ E {c2 (t + ∆t) | c2 (t) , ∆t} − c2 (t)

is the expected difference between c2 (t + ∆t) and c2 (t) conditional on c2 (t) and ∆t. The

first term on the right-hand side measures the immediate effect on cost at t, while the second

term measures the expected effect on cost at t + ∆t, discounted to t.
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The arbitrage will be (strictly) profitable if and only if ∆C < 0, which requires:5

(c2 (t)− c1)[e
r∆t − 1] < E {∆c2| c2 (t) , ∆t} . (11)

The left-hand side of the inequality is the total change in cost, valued at t + ∆t, assuming

c2(t) to remain unchanged between t and t + ∆t. The right-hand side is the change in c2(t)

expected to occur between those two dates.

Two cases must be considered, according as to which state prevails at t for the supply

cost of the risky source:

Case 1: c2(t) = c2. In this case, E {∆c2| c2 (t) , ∆t} > 0, and:

a. If c1 > c2, then ∆C < 0 for all ∆t, m, λ and γ;

b. If c1 < c2, then ∆C < 0 if and only if E {∆c2| c2 (t) , ∆t} is sufficiently large to

offset the loss from producing at t at the higher cost c2 rather than at c1.

Case 2: c2(t) = c2 + m. In this case, E {∆c2| c2 (t) , ∆t} < 0, and:

a. If c1 < c2 + m, then ∆C > 0 for all ∆t, m, λ and γ;

b. If c1 > c2 + m, then ∆C > 0 if and only if the negative E {∆c2| c2 (t) , ∆t} is

sufficient to offset the gain from producing at t at the lower cost c2 + m rather

than at c1.

Case 1a says, not surprisingly, that as long as the risky supply source is currently at its

cheapest and cheaper than the non risky source, it always pays to conserve the non risky

source.

Case 1b is more interesting. It says that when the risky supply source is currently at its

cheapest, but more expensive than the non risky source, then, if the expected cost saving

from using it at t + ∆t more than compensates the known cost increase of using the risky

source at t, it will still pay to conserve some of the non risky source, even though its current

5Notice that if c2(t) is known with certainty, so that the right-hand side is identically zero, we immediately
recover the result that the more costly source must never be used while the less costly source is still available.
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cost is less than the lowest possible cost of the risky source, let alone its expected cost. This

is clearly a case where, contrary to what efficiency dictates in the absence of uncertainty

about the future, it may be efficient to use the source that is currently more expensive even

though the less expensive one is still available. The reason why this may be optimal is that

the cheap supply thus put aside now, at the cost of having to replace it by the more costly

risky source, serves as a reserve that can be used in the unfavorable event that c2(t) jumps

up to c2 + m in the future. Whether this is optimal or not will depend, for any ∆t, on the

parameters m, λ and γ, as will be shown explicitly in the next section.

Note that if the suggested arbitrage turns out to be profitable at t, it does not mean

that it will be profitable forever, since the cost of the risky source may jump up to c2 + m

at some future date and we then find ourselves in Case 2. On the other hand, it is entirely

possible that the cost of the risky source does not jump up to c2 + m in the finite time until

its exhaustion. In that case the more costly source will be exhausted before the less costly

one is used up.

Case 2a says that if the cost of the risky source is currently at its highest and it exceeds

the cost of the non risky source, the suggested arbitrage is never profitable: it never pays to

conserve the less costly non risky source in this situation, for obvious reasons.

The interesting case is now Case 2b. It says that when the cost of the non risky source

is greater than even the worst realization of the cost of the risky source (which therefore can

only go down), postponing the use of the costlier non risky source in favor of the less costly

risky source will be profitable only if the expected future gain from a possible drop in the

supply cost of the risky source from c2 + m to c2 at some date in the future is not sufficient

to compensate for the current gain from producing at cost c2 + m rather than at the higher

c1. Otherwise it becomes efficient to use the more costly non risky source now instead of

the less costly alternative, in order to reserve the possibility of using the risky source when

its cost is in the more favorable state c2, instead of c2 + m. This imposes conditions on the

parameters which we discuss explicitly in the next section.
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Note again that even if the suggested arbitrage fails to be profitable at t, it may not

remain unprofitable indefinitely, since the cost of the risky source may later jump down to

c2, in which case we revert to Case 1. But again, if it turns out that the cost never jumps

down to c2 in the finite time during which the non risky source is being used, it is entirely

possible that this more costly supply source will be exhausted first.

The same conclusions can be obtained by considering an initial supply policy such that

the risky source 2 is being used at t and will be exhausted at t + ∆t, with the non risky

source 1 taking over at t + ∆t. If we then transfer one unit of supply from X2 from t to

t + ∆t and compensate by transferring one unit of supply from X1 from t + ∆t to t, we find

that the expected change in the total cost, conditional on ∆t and c2 (t), is

∆C = (c1 − c2 (t))− e−r∆t[(c1 − c2 (t))− E {∆c2| c2 (t) , ∆t}]. (12)

This is simply the negative of the expression for the expected cost change in (10). Therefore

if the current state is c2(t) = c2 and c1 < c2, we get the mirror image of Case 1b: conserving

the more costly risky source for later use may be unprofitable. Indeed, conserving the costlier

risky source for later then makes sense only if E {∆c2| c2 (t) , ∆t} > 0 is not so large as

to offset the gain from producing at t at the lower cost c1 rather than at c2. Otherwise,

efficiency requires that the higher cost risky source be used now, while its cost is favorable,

in order to avoid having to use it in the event its cost jumps up to c2 + m.

Similarly, if the current state is c2(t) = c2+m and c2+m < c1, we get the mirror image of

Case 2b: if E {∆c2| c2 (t) , ∆t} < 0 is sufficiently negative to offset the loss from producing

at t at cost c1 rather than at the lower cost c2 +m, then the arbitrage is profitable. Although

the risky source is now cheaper than the non risky source, if the expected drop in cost is

sufficiently large, it makes sense to conserve it in the hope of being able to use it in the event

its cost falls to c2.
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4 Conditions for conserving the lower cost supply source

We have found two situations where it may be desirable to depart from the principle that a

high cost supply source should never be used while a lower cost source is still available. For

any time ∆t remaining until the exhaustion of the resource under use in the hypothetical

initial policy, those situations will occur under particular conditions on the probabilities of

regime changes, λ and γ, and the magnitude of the upward or downward change in cost, m.

We now consider those conditions. Since in both situations this involves the expected change

in c2(t), we begin by expressing this expected change explicitly in terms of the parameters.

4.1 The expected supply cost of the uncertain source

Let p (s) ≡ Pr (c2 (t + s) = c2 + m | c2 (t) = c2 + m), the probability that the high cost c2 +

m will prevail at t + s if it prevails at t. Since c2 (t) follows the stochastic process (1), the

conditional probability that c2 (t + s + ds) = c2 + m is 1− γds if c2 (t + s) = c2 + m and it

is λds if c2 (t + s) = c2. Thus

p (s + ds) = p (s) (1− γds) + (1− p (s)) λds

so that

dp (s)

ds
= −p (s) (γ + λ) + λ. (13)

A particular solution to that linear first-order differential equation is

p =
λ

γ + λ

and a solution to the homogenous part is

p = ke−(γ+λ)s.

It follows that a general solution is

p (s) =
λ

γ + λ
+

(
γ

γ + λ

)
e−(γ+λ)s (14)

where k was set equal to γ/(γ + λ) using p (0) = 1.

12



Similarly, let q (s) ≡ Pr (c2 (t + s) = c2 | c2 (t) = c2). Then

q (s) =
γ

γ + λ
+

(
λ

γ + λ

)
e−(γ+λ)s. (15)

Letting s = ∆t, the expected value of c2(t) after an interval of time ∆t, conditional on

c2 (t) and ∆t, can now be established to be:

E {c2(t + ∆t) | c2, ∆t} = q (∆t) c2 + (1− q (∆t)) (c2 + m)

= c2 + (1− q (∆t)) m

E {c2(t + ∆t) | c2 + m, ∆t} = p (∆t) (c2 + m) + (1− p (∆t)) c2

= (c2 + m)− (1− p (∆t)) m.

Using (14) and (15), this is rewritten in terms of the parameters as:

E {c2(t + ∆t) | c2, ∆t} = c2 + m

(
λ

γ + λ

) (
1− e−(γ+λ)∆t

)
(16)

E {c2(t + ∆t) | c2 + m, ∆t} = (c2 + m)−m

(
γ

γ + λ

) (
1− e−(γ+λ)∆t

)
(17)

Figure 1 shows these expected costs as a function of ∆t. The difference in the expected value

of c2(t + ∆t) conditional on c2(t) = c2 + m and that conditional on c2(t) = c2 is seen to go

to zero when ∆t goes to infinity, as both tend to c2 + mλ/(γ + λ).

From (16) and (17), we get the expected value of the change in c2(t) conditional on c2(t)

and ∆t:

E {∆c2 | c2, ∆t} = m

(
λ

γ + λ

) (
1− e−(γ+λ)∆t

)
(18)

E {∆c2 | c2 + m, ∆t} = −m

(
γ

γ + λ

) (
1− e−(γ+λ)∆t

)
(19)

The behavior of the expected cost change as a function of ∆t is illustrated in Figure 2. When

c2(t) = c2, the expected cost change is seen to tend to mλ/(γ + λ) as ∆t tends to infinity.

When c2(t) = c2 + m, it tends to −mγ/(γ + λ).
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4.2 The conditions on the parameters

We can now express explicitly, in terms of the parameters m, λ, γ, and for any value of ∆t,

the conditions under which making use of the high cost supply source while the low cost one

is still available is efficient, given ∆t.

Consider first Case 1b, which is the case where the risky source is currently in the favor-

able state c2(t) = c2, but is more expensive that the non risky source (c1 < c2). Substituting

from (18) into (11), we find that it is strictly profitable in that situation to conserve the low

cost non risky supply source, in the hope of being able to use it in the event that c2(t) jumps

up to the unfavorable state c2 + m at t + ∆t, if (and only if):

c2 − c1 < m

(
λ

γ + λ

) (
1− e−(γ+λ)∆t

1− e−r∆t

)
e−r∆t. (20)

In Case 2b, the risky source is currently in the unfavorable state c2(t) = c2 + m and is

less expensive than the non risky source (c1 > c2 + m). Substituting from (19) into (11),

we find that the sufficient (and necessary) condition under which it is strictly profitable to

conserve the low cost risky supply in that situation, in the hope of using it in the favorable

event that c2(t) falls to c2 at t + ∆t, can be written:

c1 − (c2 + m) < m

(
γ

γ + λ

) (
1− e−(γ+λ)∆t

1− e−r∆t

)
e−r∆t. (21)

In both inequalities (20) and (21), the left-hand side expresses the cost of the arbitrage

at t and the right-hand side represents its expected discounted benefit at t + ∆t. In the first

case, the benefit comes from the fact that there is a positive probability that conserving the

non risky source will avoid having to use the risky supply source when its cost is high, thus

saving m.6 For a given ∆t, the condition is more likely to be satisfied the greater is m, the

greater is λ and the lower is γ.

In the second case, the benefit comes from the fact that there is a positive probability that

conserving the more expansive non risky source for later will mean giving up the possibility

6Notice that the right-hand side of (20) can be rewritten, using (15) as m(1 − q(∆t))e−r∆t/(1 − er∆t),
where (1− q(∆t)) is the probability of a high cost regime occurring at t + ∆t when currently in the low cost
regime.
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of using the risky supply source when its cost is low, thus saving m. This is perhaps more

naturally put in terms of the mirror image of Case 2b, generated by the alternative arbitrage

described in Section 3, where it is initially hypothesized that the risky supply source is

used up to date t + ∆t, at which point the more expensive non risky source takes over. The

arbitrage involves exchanging a unit from supply source 2 at t for a unit from supply source 1

at t + ∆t. The benefit then comes from the fact that there is a positive probability that

conserving the less costly risky source will permit its use when its cost has fallen to c2 rather

than at its current cost of c2 +m.7 For a given ∆t, the condition is more likely to be satisfied

the greater is m, the greater is γ and the lower is λ.

Notice that when ∆t tends to zero, meaning that the supply source in use under the

initially hypothesized scenario is about to reach exhaustion, then

lim
∆t→0

(
1− e−(γ+λ)∆t

1− e−r∆t

)
e−r∆t =

γ + λ

r
.

Consequently, conditions (20) and (21) reduce to:

c2 − c1 < m
λ

r
(22)

c1 − (c2 + m) < m
γ

r
(23)

As supply is just about to be exhausted with c2(t) = c2, the probability that, should c2(t)

jump to c2 + m, it will drop back to c2 in the future becomes irrelevant in determining

whether it pays to conserve the low cost source: time will have run out to profit from this

possible drop in costs of the risky source. Similarly, if supply is about to be exhausted with

c2(t) = c2 + m, λ becomes irrelevant.

At the other extreme, when ∆t tends to infinity, the right-hand side tends to zero in

both conditions (20) and (21). Hence, when ∆t is infinite, conditions (20) and (21) are never

satisfied. Such would be the case if the low cost supply source were infinitely abundant, either

7As in the previous case, the right-hand side of (21) can be rewritten, using (14) as m(1−p(∆t))e−r∆t/(1−
er∆t), where (1 − p(∆t)) is the probability of a low cost regime occurring at t + ∆t when currently in the
high cost regime.
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consisting of a resource stock of infinite size or of a technology that allowed an unlimited

production flow. Clearly, in such a case, any supply policy that involved using the high cost

source at any given time would be dominated by a policy that allowed the same consumption

flow from the low cost source.

Since the right-hand side of both conditions (20) and (21) is a continuous function of

∆t, it follows that for any given current cost spread between the high cost and low cost

supply sources, there is a ∆t ≥ 0 beyond which it is not optimal to conserve the high cost

supply source while the low cost one is still available. But as long as conditions (20) or

(21) are satisfied, there will always be a range of ∆t for which it is profitable to do so.

Alternatively, for any finite ∆t, there are values of the parameters and of the cost spread

such that conditions (20) or (21) are satisfied.

5 Some special cases

The preceding analysis lends itself to some interesting specific interpretations. For one, the

non risky supply source can be interpreted as an artificially constituted strategic reserve.

As a second specific case, a jump in the cost of the risky source can be made to represent

a complete embargo. Finally, the formulation of the problem allows us to identify a precise

property on the value function that prevents the problem from being given a certainty

equivalent interpretation in this particular case, but which could be satisfied in other specific

circumstances under similar uncertainty about the future. We now turn briefly to those

interpretations.

5.1 An artificially constituted strategic reserve

Suppose that the non risky source 1 is from an artificially constituted stockpile.8 The differ-

ence with the natural deposit is twofold. First, the supply cost c1 must now be interpreted

as net of storage cost. It could therefore be negative, if the unit cost of storing the resource

8The management of strategic reserves has been studied, in differing manners, by Teisberg (1981), Hillman
and Long (1983), Bergström, Loury and Persson (1985) and Devarajan and Wiener 1989)
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exceeds the cost of bringing it to the market. We would then necessarily have c1 < c2(t) and

would forcibly find ourselves in either Cases 1.b or 2.a of Section 3, with Case 1.b being the

interesting one. Of course, if c1 is positive, the interesting Case 2.b (c1 > c2 + m) remains

theoretically possible, although much less likely than for a natural supply source.

More importantly perhaps, if supply source 1 is an artificially created stock, the flow

x1(t) is not restricted to be nonnegative, since one can draw from supply source 2 in order

to add to the stockpile. The conditions just derived can be used to argue that not only can

it be efficient to conserve the cheaper non risky source when the supply cost from the risky

source is low (c2(t) = c2 > c1), but also that it can be efficient to add to it by drawing from

the risky supply source more than is consumed.

To see this, let α > 0 represent the upper bound to the rate of stockpiling. We must then

replace the nonnegativity constraint x1(t) ≥ 0 on supply source 1 by x1(t) ≥ −α, keeping,

of course, the nonnegativity constraint x2(t) ≥ 0 on supply source 2. Condition (7) must

be modified accordingly, but condition (8) is unchanged. We know from condition (7) that

as long as the two full marginal costs differ, one and only one of the constraints will be

binding. In other words, unless there are no resources left, at any time t either x1(t) = −α

and x2(t) > α or x1(t) > 0 and x2(t) = 0.9 Let the initial supply policy be such that at date

t source 2 is being used at a rate x2(t) > α, while x1(t) = −α, so that some stockpiling is

going on at rate α. Suppose, furthermore, that starting at some date t + ∆t, when the risky

supply source 2 is depleted, consumption needs are met entirely from the non risky supply

source 1. Now consider a transfer of one unit of supply from source 2 from t to t + ∆t and

compensate by transferring one unit of supply from source 1 from t + ∆t to t.10 This leaves

the consumption path unchanged, but changes the expected total cost, conditional on ∆t

and c2(t), by an amount given by (12). As already pointed out, this is the negative of (10)

and the cases obtained for c2(t) = c2 and c2(t) = c2 + m are simply the mirror images of

9Recall that under the assumptions on the utility function, a positive quantity will be consumed at any
given time unless both sources are exhausted. Therefore if x1(t) = −α, not only must x2(t) be strictly
positive, it must exceed α in order to have x1(t) + x2(t) > 0.

10This is the alternative arbitrage considered at the end of Section 3.
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Case 1 and Case 2 respectively.

It follows that if, at time t, c2(t) = c2 > c1, then conserving the more costly risky source

for later use is profitable only if the positive expected change in cost (E{∆c2|c2(t), ∆t}) is

not so large that it more than offsets the gain that can be had by producing at t at cost c1

rather than at the higher cost c2. Condition (20) on the parameters would then be violated.

Otherwise, condition (20) is satisfied and, not only does it become optimal to use the higher

cost risky source now, while its cost is c2, in the hope of avoiding having to use it when its

cost is c2 + m, but it is optimal to draw more than is required to meet consumption needs

in order to add to the artificial stocks, at the maximal rate α.

If ever the unlikely case c2(t) = c2+m < c1 turned out to pertinent, then, if condition (21)

is satisfied, it would make sense to draw down the more costly non risky stockpile in the

hope of being able to use the risky source in its more favorable state.

5.2 A complete embargo

A situation of complete temporary embargo can be captured by assuming m to be infinite

in (1). Thus, when c2(t) = c2, there is a probability λdt that it will become infinite in the

interval of time dt. When this occurs, supply from source 2 is ruled out for the duration

of the embargo, being prohibitively costly. However, when the risky source is in a state of

embargo, there is a probability γdt that this embargo will be lifted during the interval dt, as

cost drops back to c2.

It goes without saying that Case 2 is now irrelevant, since c2 + m = ∞. But Case 1

remains, being conditional on c2(t) = c2. If the state at time t is such that c2(t) = c2 > c1

(Case 1b), then, given the positive probability that an embargo will occur over the interval dt,

in the form of an infinitely large expected cost change, conserving the cheap supply source 1

is always profitable. This can be seen directly from condition (20), by setting m = ∞ in the

right-hand side expression. Not only is it always optimal to conserve the low cost non risky

supply source when faced with the probability of an embargo, but, if the low cost source in

question is an artificial stockpile, it is always profitable to add to it at the maximal rate.
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Of course, if the arbitrage is profitable at t, it does not mean that it will be profitable

forever, since an embargo may occur in the future during which consumption will have to

rely strictly on the non risky supply source.

5.3 Certainty equivalence

Assume γ = 0. Then the stochastic process (1) describes a situation where there is a

probability of a once and for all future jump up in the cost of the risky source, with no

chance of it dropping back if the upward jump ever occurred. Since all uncertainty is then

lifted if ever c2(t) = c2 + m, we only have to consider the state c2(t) = c2, and therefore:

E{∆V |c2(t)} = λ[V (X1(t), X2(t), c2 + m))− V (X1(t), X2(t), c2)].

The Bellman equation (6) can then be written:

(r + λ)V (X1(t), X2(t), c2) = max
x1(t),x2(t)

{U(x1(t) + x2(t))− c1x1(t)− c2x2(t) (24)

−VX1(X1(t), X2(t), c2)x1(t)− VX2(X1(t), X2(t), c2)x2(t)

+λV (X1(t), X2(t), c2 + m)}

All the analysis pertaining to Case 1 still goes through, except for having γ = 0 in condition

(20).

Notice that if and only V (X1(t), X2(t), c2 + m) = 0, then the problem can be written in

a certainty equivalent form, by simply adjusting the discount rate by the factor λ to take

account of the uncertainty about the future. In a context where there are two sources of

supply, one of them being certain, it would not make sense to assume that because the cost

of the risky source jumps up, the value of the remaining stocks becomes zero. This is true

even with m = ∞.11 For this reason, certainty equivalence does not hold for the problem at

hand. However, in a context where the only source of supply was the risky one, one could

imagine conditions on the utility function such that the jump would render the resource

11Nor would it make sense if we had γ > 0, for then not only are there two sources of supply, but there is
always the possibility that the cost will jump down in the future after having jumped up.
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worthless and certainty equivalence could be used to carry out the analysis.12

6 Conclusion

In a world where the future is known with certainty, it is optimal to want to exhaust the

cheaper supply source before moving on to a more costly one. This makes sense because,

when the future is discounted at a positive rate, postponing the high costs as long as possible

minimizes the total cost of a given consumption path. Uncertainty about the future can

introduce ambiguity into this conclusion, as we have shown.

We have captured this uncertainty by assuming that when the current cost of a risky

supply source is low, there is a positive probability that it will jump up in the future and,

when the current cost is high, there is a probability that it will jump down. A feature of such

a stochastic process is that the expected change in cost over any positive interval of time is

different from zero. We believe this is a good representation of reality, given the important

geopolitical risk to which is subject the supply of a number of nonrenewable resources. In

such a world, whether the efficient use of multiple supply sources requires conserving the

currently cheaper source will depend on the expected future change in costs of the risky

source. If the cheaper source currently happens to be the non risky one, then you may want

to conserve it for future use if the expected change in cost of the risky source is positive.

Even if the cheaper source happens to be the risky source, you may want to conserve it for

future use if the expected change in cost is negative. In both cases we have characterized

the conditions on the parameters under which it makes sense to conserve the cheap source

for future use rather than consuming it while it is known to be cheaper. In fact, if the non

risky source is interpreted as an artificially constituted stockpile, by opposition to a natural

deposit, it can make sense, for appropriate values of the parameters, to add to it, even though

it would currently be cheaper to use it than to use the risky source.

Our analysis includes, as a special limiting case, that of a complete embargo on supply,

12An example of this might be, under certain circumstances, the exploitation of a single source of supply
under threat of expropriation, a subject dealt with in Long (1975).
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which is akin to an infinite upward jump in cost. Even if there is a probability that, once in

place, the embargo will be lifted at some subsequent time, it is always optimal to conserve a

cheap non risky source when faced with the probability of a future embargo. In this extreme

case, this is the only way of guaranteeing a supply source in the eventuality of a complete

embargo on the risky source. At the other extreme, as the size of the possible jump in cost

tends to zero, we recover the deterministic case, under which it is always optimal to use the

currently cheaper supply source.

We have assumed throughout that one of the two sources is non risky, in the sense that

its future cost is known with certainty. This allows for sharper results than if the future

cost of both sources were uncertain, but to a different degree. The analysis could easily be

extended to treat such a case, but with little gain in insight. Adding uncertainty as to the

size of the jump can also be handled without great difficulty, but with little gain.
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Appendix

We prove in this Appendix the statement made in (9) and use it to show that it follows

from the Bellman equation (6) that

e−rdtE{VX2(X1(t + dt), X2(t + dt), c2)} − VX2(X1(t), X2(t), c2) = 0

is a necessary condition for optimality.

Consider the case where c2(t) = c2 (the adaptation for c2(t) = c2 + m is immediate),

and the scenario where x2 (t) > 0 and x1 (t) = 0 (again the adaptation to the alter-

native case is immediate). Then, for a small interval of time dt, the expected value of

VX2(X1(t), X2(t), c2 (t)) at t+ dt is

E{e−rdtVX2(X1(t + dt), X2(t + dt), c2(t + dt))} =

λdte−rdtVX2(X1(t + dt), X2(t + dt), c2 + m)

+ (1− λdt) e−rdtVX2(X1(t + dt), X2(t + dt), c2).

Now calculate e−rdtVX2(X1(t+dt), X2(t+dt), c2 +m) and e−rdtVX2(X1(t+dt), X2(t+dt), c2)

by expanding these functions around (dt = 0, X2(t)), treating in the first instance X1 (t) and

c2+m as parameters since X1(t) does not change over the interval and c2+m is constant, and

treating X1 (t) and c2 as parameters in the second instance. This gives, using dX2 = −x2(t)dt

and with c2(t) = c2 by assumption:

E{e−rdtVX2(X1(t + dt), X2(t + dt), c2)} =

λdt [VX2(X1(t), X2(t), c2 + m)− rdtVX2(X1(t), X2(t), c2 + m)

− VX2X2(X1(t), X2(t), c2 + m)x2(t)dt]

+ (1− λdt) [VX2(X1(t), X2(t), c2)− rdtVX2(X1(t), X2(t), c2)

− VX2X2(X1(t), X2(t), c2)x2(t)dt]

The terms in (dt)2 can be neglected, since they go to zero faster than dt as dt → 0. Hence
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this becomes:

e−rdtE{VX2(X1(t + dt), X2(t + dt), c2)} − VX2(X1(t), X2(t), c2) = (25)

+ {λ [VX2(X1(t), X2(t), c2 + m)− VX2(X1(t), X2(t), c2)]

− rVX2(X1(t), X2(t), c2)− VX2X2(X1(t), X2(t), c2)x2(t)}dt,

which establishes (9) for c2 (t) = c2. The expression that applies when c2 (t) = c2 + m is

obtained similarly.

The Bellman equation is:

rV (X1(t), X2(t), c2(t)) = max
x1(t),x2(t)

{U(x1(t) + x2(t))− c1x1(t)− c2(t)x2(t)

−VX1(X1(t), X2(t), c2(t))x1(t)− VX2(X1(t), X2(t), c2(t))x2(t)

+E{∆V |c2(t)}, }

with E{∆V |c2(t)} defined as in Section 2. As noted also in Section 2, since the two sources

are perfect substitutes ( ∂U
∂x1

= ∂U
∂x2

), xi (t) ≥ 0, and the full total cost is linear in xi(t),

the solution to the maximization entails either x1(t) > 0 and x2(t) = 0, or x1(t) = 0 and

x2(t) > 0, or x1(t) = x2(t) = 0 when the two sources are exhausted.13 Therefore, if at date t,

x2(t) > 0 and x1(t) = 0 (the adaptation to the alternative case is immediate) and c2(t) = c2

(the adaptation to the case of c2(t) = c2 + m is also immediate), the Bellman equation can

be written, after replacing x2(t) by its optimal value x∗2(t), as:

(r + λ) V (X1(t), X2(t), c2) = U(x∗2 (t))− c2(t)x
∗
2 (t)− VX2(X1(t), X2(t), c2(t))x

∗
2 (t)

+ λV (X1(t), X2(t), c2 + m)}

Differentiating both sides totally, while applying the envelope theorem and noting that

dX2 (t) = −x∗2 (t) and dX1 (t) = 0 (since x∗1(t) = 0 by assumption), we obtain:

(r + λ)VX2(X1(t), X2(t), c2) = λVX2(X1(t), X2(t), c2 + m)− VX2X2(X1(t), X2(t), c2(t))x
∗
2(t).

13It is only at transition dates, when c1 + VX1 = c2 + VX2 , that the two full marginal costs do not differ,
but that cannot last for any positive interval of time.
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Substituting into the right-hand side of (25), we find that it is indeed zero.

This proves the claim that e−rdtE{VX2(X1(t+dt), X2(t+dt), c2)}−VX2(X1(t), X2(t), c2) =

0 is a necessary condition. The proof for the case of c2(t) = c2 + m proceeds in the same

way, mutatis mutandis. As argued in Section 2, it follows that (8) is also necessary.
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Figure 1: Expected cost after a period ∆t has elapsed
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Figure 2: Expected cost change after a period ∆t has elapsed
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