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(Minimally) ε-Incentive Compatible Competitive Equilibria in
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Tommy Andersson†, Lars Ehlers‡ and Lars-Gunnar Svensson§

April 2012

Abstract

We consider competitive and budget-balanced allocation rules for problems where a num-
ber of indivisible objects and a fixed amount of money is allocated among a group of
agents. In “small” economies, we identify under classical preferences each agent’s maximal
gain from manipulation. Using this result we find the competitive and budget-balanced
allocation rules which are minimally manipulable for each preference profile in terms of
any agent’s maximal gain. If preferences are quasi-linear, then we can find a competitive
and budget-balanced allocation rule such that for any problem, the maximal utility gain
from manipulation is equalized among all agents.

JEL Classification: C71, C78, D63, D71, D78.
Key Words: ε-Incentive Compatibility, Competitive Allocation, Budget-Balance, Indivis-
ibilities.

1 Introduction

Several seminal papers have investigated the manipulability of competitive mechanisms in
classical exchange economies. Hurwicz (1972) has shown that in “small” finite economies
any competitive mechanism is manipulable, i.e. for some economies some agents’ profit from
mispresenting their true preferences may be substantial. Roberts and Postlewaite (1976)
have shown as when a small finite economy is replicated, then under certain assumptions, any
competitive mechanism becomes limiting incentive compatible. More precisely, for any given
ε > 0, there is a large enough economy such that the gains from manipulation do not exceed
ε. Several subsequent papers have examined different qualifications of the result by Roberts
and Postlewaite (1976).1

∗First version: April 14, 2011. The results in this paper and the results by Fujinaka and Wakayama (2011)
were independently obtained. Financial support from The Jan Wallander and Tom Hedelius Foundation is
acknowledged by the authors. The second author is also grateful to the SSHRC (Canada) and the FQRSC
(Québec) for financial support.
†Department of Economics, Lund University.
‡Département de Sciences Économiques and CIREQ, Université de Montréal, Montréal, Québec H3C 3J7,

Canada; e-mail: lars.ehlers@umontreal.ca (Corresponding author).
§Department of Economics, Lund University.
1Among others, Jackson (1992), Manelli and Jackson (1997), Cordoba and Hammond (1998) and Kovalenkov

(2002).
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In this paper we consider economies with indivisible objects. Any agent’s consumption
bundle consists of an object and a monetary consumption. Such problems arise in rent
division, job allocation, land distribution, and heritage division.2 Specifically we are interested
in investigating the manipulability of competitive (or fair) and budget-balanced allocation
rules. From Green and Laffont (1979) it is known that any such rule is manipulable. Not only
this, considering replica of economies with indivisible objects will neither change the set of
competitive and budget-balanced allocations nor alter the amount by which any agent is able
to manipulate any competitive and budget-balanced allocation rule. Therefore, we search for
the rules which are minimally manipulable in the class of competitive and budget-balanced
allocation rules in small finite economies.

Specifically, we determine by how much any agent can profit from manipulation for any
competitive and budget-balanced rule. Namely, for any economy and any agent there exist
competitive and budget-balanced allocations which maximize his utility in this set. Then
this agent’s gain from (optimal) manipulation is equal to the utility difference between this
maximizing allocation and the allocation chosen by the rule for this economy. This result then
allows us to show the existence of competitive and budget-balanced rules which are minimally
manipulable in the following sense: for each preference profile the amount by which any agent
can manipulate is minimal among all profitable manipulations of all competitive and budget-
balanced rules. Under quasi-linear utilities, we show that there exists a competitive and
budget-balanced allocation rule which for each utility profile equalizes the maximal utility
gain from manipulation among all agents.

The paper is organized as follows. Section 2 introduces economies with indivisibilities
and competitive and budget-balanced allocations. Section 3 characterizes any individual’s
maximizing competitive and budget-balanced allocations. Section 4 contains all our results
regarding manipulation of competitive and budget-balanced allocation rules. Section 5 dis-
cusses our results.

2 Agents, Preferences and Allocations

Let N = {1, ..., n} denote the finite set of agents and M = {1, ...,m} denote the finite set of
objects. Throughout we assume |M | = |N |.3 Each agent i ∈ N is assigned exactly one object
j ∈ M . Each object j ∈ M has a price denoted by pj . Let p ∈ RM denote the price vector
for all objects in M . We call a price vector p ∈ RM budget-balanced if

∑
j∈M pj = 0.4

A consumption bundle is a pair (j, pj) ∈ M × R (which stands for consuming object
j and paying price pj (or receiving monetary compensation −pj)).5 Agent i’s preference
over consumption bundles are supposed to be represented by a continuous utility function
ui : M × RM → R. Let uij(p) denote the utility of agent i when consuming object j at price
pj (under the price vector p). The utility function is supposed to be strictly decreasing in
prices, i.e. uij(p) > uij(p

′) whenever pj < p′j . Moreover, for each agent i ∈ N and for any two
bundles (j, pj) and (k, pk), there exists a number β ∈ R such that agent i is indifferent between
the bundles (j, pj) and (k, pk + β), i.e. uij(p) = uik(p′) whenever p′k = pk + β. This means

2See e.g. Aragones (1995), Dufton and Larson (2011), Haake, Raith and Su (2000), Klijn (2000) and
Jaramillo, Kayı and Klijn (2012).

3If |N | > |M |, then adding |N | − |M | null objects does not alter our results.
4All our results remain valid when the budget constraint is replaced by

∑
j∈M pj = α for some exogenously

given number α ∈ R.
5When the budget constraint is

∑
j∈M pj = α, then (j, pj) stands for consuming j and paying −α

n
+ pj .
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that no object is infinitely desirable or undesirable for any agent. A list u = (u1, ..., un) of
individual utility functions is a (utility) profile. We adopt the notational convention of writing
u = (ui, u−i) for any i ∈ N . The set of utility profiles having the above properties is denoted
by U .

A feasible assignment x : N → M assigns every agent i ∈ N an object j ∈ M such that
no object is assigned to more than one agent (or buyer). Let xi denote the object assigned
to agent i. Note that any feasible assignment assigns every agent one object.

An allocation consists of a price vector p and a feasible assignment x, denoted by (p, x) for
short. An allocation (p, x) is budget-balanced if

∑
j∈M pj = 0. An allocation rule is a function

ϕ choosing for each utility profile u ∈ U a non-empty set of allocations ϕ(u) such that for all
(p, x), (q, y) ∈ ϕ(u), we have uixi(p) = uiyi(q) for all i ∈ N , i.e. any two chosen allocations
are utility-equivalent for all agents. Such a correspondence is called essentially single-valued.

Definition 1. At a given profile u ∈ U , a competitive allocation (or a competitive equilibrium)
is a price vector p and a feasible assignment x such that:

uixi(p) ≥ uij(p) for all i ∈ N and all j ∈M.

If (p, x) is a competitive allocation, then p is a competitive price vector and x is a competitive
assignment.

Let F̂(u) denote the set of competitive allocations at a given profile u ∈ U . It is well-
known that F̂(u) is a non-empty set for each profile u ∈ U . In the remaining part of the paper
we will only consider competitive and budget-balanced allocations. These allocations are a
(non-empty) subset of F̂(u) denoted by F(u). For convenience, in the following “competitive
allocation(s)” implicitly stands for “competitive and budget-balanced allocation(s)”.

A competitive (allocation) rule is a non-empty correspondence ϕ choosing for each profile
u ∈ U a non-empty set of competitive allocations ϕ(u) ⊆ F(u) such that uixi(p) = uiyi(q)
for all i ∈ N and all (p, x), (q, y) ∈ ϕ(u). Note that if a competitive rule chooses a unique
allocation for each utility profile, then this rule is essentially single-valued.

Given u ∈ U , allocation (p, x) is efficient if (p, x) is budget-balanced and there does
not exist a budget-balanced allocation (q, y) such that uiyi(q) ≥ uixi(p) for all i ∈ N with
strict inequality holding for some k ∈ N . By Svensson (1983), all competitive allocations are
efficient.

3 Individual Utility Maximizing Competitive Allocations

For our purposes, it will turn out to be useful to characterize the utility maximizing compet-
itive allocations for any (individual) agent k ∈ N . Obviously, for any agent k ∈ N and for
each profile u ∈ U , there exists an allocation in F(u) which maximizes the utility of agent k.
This follows simply from the fact that the set F(u) is compact under our assumptions. For
any utility profile u, let φk(u) denote the set of competitive allocations which maximize the
utility for agent k. In the remaining part of the paper, let (pk, xk) stand for some element in
φk(u) unless otherwise stated.

For any i, j ∈ N we write i→(p,x) j if uixi(p) = uixj (p), i.e., if agent i is indifferent between
his consumption bundle and agent j’s consumption bundle at (p, x). Now, to characterize
allocation (pk, xk) in more detail, the following concepts from Andersson, Ehlers and Svensson
(2010) will be useful.
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Definition 2. Let (p, x) be a competitive allocation.

(i) An indifference chain at (p, x) consists of a tuple of distinct agents g = (i0, ..., it) such
that i0 →(p,x) i1 →(p,x) · · · →(p,x) it.

(ii) Agent i ∈ N is linked to agent k ∈ N at (p, x) if there exists an indifference chain of
type (i0, ..., it) at (p, x) with i = i0 and it = k.

(iii) (p, x) is agent k-linked if each agent i ∈ N is linked to agent k.

An indifference chain is simply a sequence of agents such that any agent in the sequence
is indifferent between his bundle and the bundle of the agent following him in the sequence.
Indifference chains indirectly link agents via indifference in a sequence of linked agents. At
agent k-linked competitive allocations each agent is linked to agent k through some indifference
chain.

The following result establishes that for any utility profile, agent k-linked competitive
allocations coincide with the set of equilibria which maximize agent k’s utility among all
competitive allocations.

Theorem 1. For each profile u ∈ U , each k ∈ N and each (p, x) ∈ F(u), we have:

(p, x) ∈ φk(u) if and only if (p, x) is agent k-linked.

Proof. Let u ∈ U , k ∈ N and (p, x) ∈ φk(u). First, we demonstrate that (p, x) is k-linked. To
obtain a contradiction, suppose that (p, x) is not k-linked, i.e., that there is an agent l ∈ N
that is not linked to agent k. Let:

G = {i ∈ N : i is linked to k at (p, x)} ∪ {k}.

Because k ∈ G and l ∈ N \G, both G and N \G are non-empty. It follows by construction that
uixi(p) > uixj (p) if i ∈ N \ G and j ∈ G. From the Perturbation Lemma in Alkan, Demange
and Gale (1991) it then follows that there exists another equilibrium (q, y) ∈ F(u) such that
qxi < pxi for all i ∈ G. Then by Definition 1 and monotonicity it follows that:

uiyi(q) ≥ uixi(q) > uixi(p) for all i ∈ G.

Because k ∈ G it follows that ukyk(q) > ukxk(p), which contradicts the fact that (p, x) ∈ φk(u)
and (p, x) maximizes k’s utility among all competitive allocations. Hence, if (p, x) ∈ φk(u),
then (p, x) is agent k-linked.

In showing the other direction, let u ∈ U , k ∈ N , and (p, x), (q, y) ∈ F(u) be two k-
linked competitive allocations. By the first part of the proof, without loss of generality, we
may suppose (p, x) ∈ φk(u). Obviously, if p = q, then for all i ∈ N , uixi(p) = uiyi(q) and
(q, y) ∈ φk(u).

Suppose that p 6= q. Since
∑

i∈M pi =
∑

i∈M qi = 0, the set G = {j ∈ M : pj > qj} is
non-empty.

We first show for all i ∈ N , if xi ∈ G, then yi ∈ G. To obtain a contradiction, suppose
that xi ∈ G and yi /∈ G. But then by Definition 1 and monotonicity of ui:

uixi(q) > uixi(p) ≥ uiyi(p) ≥ uiyi(q). (1)

But this is a contradiction to (q, y) ∈ F(u). Hence, yi ∈ G.
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Let H = {i ∈ N : xi ∈ G}. By |N | = |M | we have H 6= ∅. Now for i ∈ H, we have by (1),
yi ∈ G.

First, let k ∈ H. Because (p, x) is k-linked, there exist i ∈ N\H and j ∈ H such that
i→(p,x) j. But then we have:

uiyi(q) ≤ uiyi(p) ≤ uixi(p) = uixj (p) < uixj (q),

where the first inequality follows from i ∈ N\H and qyi ≥ pyi , the second inequality from
competitiveness of (p, x), the equality from i →(p,x) j, and the last inequality from xj ∈ G
and pxj > qxj . Now (q, y) is not competitive, a contradiction.

If k ∈ N\H, then we obtain similarly a contradiction to competitiveness of (p, x) using
the k-linked allocation (q, y).

Remark 1. Since agent k utility maximizing competitive allocations exist for any profile
u ∈ U (because F(u) is compact), it is clear that agent k-linked competitive allocations exist
for any profile u ∈ U . In addition, the proof of Theorem 1 has shown, if (p, x) and (q, y) are
k-linked, then p = q and all allocations in φk(u) are utility equivalent. Hence, the price vector
at the agent k utility maximizing allocations is unique. Note, however, that competitive
allocations maximizing the utility of agent k need not be unique because there may be several
utility equivalent competitive assignments.

4 Manipulability

It is well-known from Green and Laffont (1979) that any efficient and budget-balanced allo-
cation rule is manipulable for some profile u ∈ U . Since competitive (and budget-balanced)
allocation rules are efficient, this result implies that each competitive allocation rule is manip-
ulable for some profile u ∈ U . Manipulability (and non-manipulability) in this context refers
to the following.

Definition 3. An allocation rule ϕ is manipulable at a profile u ∈ U by an agent i ∈ N if
there exists a profile (ûi, u−i) ∈ U and two allocations (p, x) ∈ ϕ(u) and (q, y) ∈ ϕ(ûi, u−i)
such that uiyi(q) > uixi(p). If the allocation rule ϕ is not manipulable by any agent at any
profile u ∈ U , then ϕ is said to be incentive compatible (or non-manipulable).6

A natural weakening of incentive compatibility is ε-incentive compatibility where no agent
can gain by more than ε from manipulation.

Definition 4. Let ε ≥ 0. An allocation rule ϕ is ε-incentive compatible at a profile u ∈ U
if for all i ∈ N and any profile (ûi, u−i) ∈ U , and any (p, x) ∈ ϕ(u) and (q, y) ∈ ϕ(ûi, u−i),
we have uiyi(q) ≤ uixi(p) + ε. If the allocation rule ϕ is ε-incentive compatible at any profile
u ∈ U , then ϕ is said to be ε-incentive compatible.

Note that 0-incentive compatibility is identical with incentive compatibility.
Because each allocation rule ϕ that makes a selection from the set F(u) is manipulable it is

important to characterize exactly how much agents can gain from strategic misrepresentation.
The next result states that if agent k ∈ N manipulates the competitive rule, then the agent
must be assigned an object whose price has decreased.

6Note that for single-valued rules (which choose for each profile a unique allocation), Definition 3 may be
rewritten as follows: ϕ is manipulable at a profile u ∈ U by an agent i ∈ N if there exists a profile (ûi, u−i) ∈ U
such that for {(p, x)} = ϕ(u) and {(q, y)} = ϕ(ûi, u−i) we have uiyi(q) > uixi(p).
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Lemma 1. For any competitive allocation rule ϕ, for any profile u ∈ U and for any agent
k ∈ N , we have:

(i) If there exist (p, x) ∈ ϕ(u) and (q, y) ∈ ϕ(ûk, u−k) such that ukyk(q) > ukxk(p), then
qyk < pyk .

(ii) If there exist (p, x) ∈ ϕ(u) and (q, y) ∈ ϕ(ûk, u−k) such that ukyk(q) ≥ ukxk(p), then
qyk ≤ pyk .

Proof. We only show (i) since (ii) can be shown similarly. Let k ∈ N , u ∈ U and ϕ be an
arbitrary competitive allocation rule. Suppose that (p, x) ∈ ϕ(u), (q, y) ∈ ϕ(ûk, u−k) and
ukyk(q) > ukxk(p). Then by Definition 1 it follows that:

ukyk(q) > ukxk(p) ≥ ukyk(p).

This and monotonicity yields qyk < pyk which concludes the proof.

The following result states that each agent k ∈ N for each profile u ∈ U can manipulate
any competitive allocation rule ϕ at most by receiving the utility that agent k receives from
his utility maximizing competitive allocation (pk, xk) at profile u ∈ U , i.e. by Theorem 1, the
agent k-linked competitive allocation at profile u ∈ U .

For any profile u ∈ U and any (p, x) ∈ ϕ(u), let:

fk(ϕ, u) = sup
ûk

min
(q,y)∈ϕ(ûk,u−k)

ukyk(q)− ukxk(p).

Theorem 2. For any competitive allocation rule ϕ, for any profile u ∈ U and for any agent
k ∈ N , we have for (pk, xk) ∈ φk(u) and (p, x) ∈ ϕ(u), fk(ϕ, u) = ukxkk

(pk)− ukxk(p).

Proof. To prove the result, let k ∈ N , u ∈ U , ϕ be a competitive rule, and (p, x) ∈ ϕ(u).
Take some ûk and some (q, y) ∈ ϕ(ûk, u−k). If:

ukyk(q)− ukxk(p) > ukxk(pk)− ukxk(p),

then ukyk(q) > ukxk(pk) which would mean the agent k-linked competitive rule is manipulable
by agent k, which is a contradiction to Andersson, Ehlers and Svensson (2010, Corollary 1)7.
Thus, fk(ϕ, u) ≤ ukxkk(pk)− ukxk(p).

Suppose that (pk, xk) ∈ φk(u). In the remaining part of the proof, for all z ∈ RM let
ûεkj(z) = pkj − zj for all j ∈M \ {xkk} and ûε

kxkk
(z) = pk

xkk
− zxkk + ε for some “small” ε > 0.

Note first that (pk, xk) ∈ F(ûεk, u−k). This follows since (pk, xk) ∈ F(u) and:

ûε
kxkk

(pk) = ε > 0 = ûεkj(p
k) (2)

for all j ∈M \ {xkk} by construction.
Second, by (pk, xk) ∈ φk(u) and Theorem 1, (pk, xk) is k-linked under u. But now (pk, xk)

is k-linked under (ûεk, u−k) and again by Theorem 1, (pk, xk) ∈ φk(ûεk, u−k). Thus, ε is agent
k’s maximal utility in F(ûεk, u−k).

Let (q, y) ∈ ϕ(ûεk, u−k). If pk
xkk
> qxkk

, then ukyk(q) > ε, which contradicts the fact that ε

is agent k’s maximal utility in F(ûεk, u−k).

7Their arguments remain valid in our setting.
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Thus, pk
xkk
≤ qxkk

. We show that yk = xkk. Suppose that yk 6= xkk. If q = pk, then

ukyk(q) = 0 < ε = ukxkk
(q), a contradiction. Thus, q 6= pk. By budget-balance, now ukyk(q) >

0 = ukyk(pk). Thus, pkyk > qyk . Let j ∈ N be such that xkj = yk. Now we have:

ujyj (q) ≥ ujyk(q) > ujyk(pk) ≥ ujyj (pk)

where the weak inequalities follow from competitiveness and the strict inequality from pkyk >

qyk . Thus, pkyj > qyj . Now again let l ∈ N be such that xkl = yj . Using the same arguments

it can be shown pkyl > qyl . Continuing iteratively, now for some h ∈ N we must (cycle and)

have yh = xkk. But now again pkyh > qyh , or pk
xkk
> qxkk

, which is a contradiction to pk
xkk
≤ qxkk .

Thus, yk = xkk and pk
xkk
≤ qxkk . If pk

xkk
= qxkk

, then fk(ϕ, u) ≥ ukxkk(pk)−ukxk(p), the desired

conclusion. Let pk
xkk
< qxkk

But now we have:

ûε
kxkk

(q) = pk
xkk
− qxkk + ε ≥ max

j∈M
pkj − qj > 0,

where the first inequality follows from construction of ûεk and competitiveness of (q, y), and
the last inequality follows from pk

xkk
< qxkk

and
∑

j∈M qj = 0 =
∑

j∈M pkj . Now as ε → 0, we

must have qxkk
→ε→0 pxkk

. Thus, by yk = xkk,

lim
ε→0

ukyk(q) = lim
ε→0

ukxkk
(q) = ukxkk

(pk),

and fk(ϕ, u) ≥ ukxkk(pk)− ukxk(p), the desired conclusion.

Theorem 2 yields as corollary that if some agent i’s profit from manipulation is greater for
one rule than for a second rule, then there is another agent j whose profit from manipulation
is smaller for the first rule than for the second one.

Corollary 1. For each profile u ∈ U and for any two competitive allocation rules ϕ and ψ,
it holds that: if fi(ϕ, u) > fi(ψ, u) for some i ∈ N , then fj(ϕ, u) < fj(ψ, u) for some j ∈ N .

Proof. Let (p, x) ∈ ϕ(u) and (q, y) ∈ ψ(u). Suppose that the statement is not true, i.e. that
for all l ∈ N , fl(ϕ, u) ≥ fl(ψ, u). By Theorem 2, we have then for all l ∈ N , ulxl(p) ≤ ulyl(q),
and uixi(p) < uiyi(q). But now (x, p) is not efficient, which contradicts the fact that all
competitive and budget-balanced allocations are efficient (Svensson, 1983).

Theorem 2 characterizes the exact amount by which an agent may manipulate an arbitrary
competitive rule. In applications, we may want to minimize the gains from manipulation for all
agents in the spirit of Definition 4, i.e. identifying a smallest global bound and a competitive
rule such that for any given profile no agent can manipulate by more than this bound (and
we cannot find another competitive rule with a smaller bound). Of course, by Theorem 2 this
approach is fruitless because utilities are arbitrary and for any ε ≥ 0 there does not exist a
competitive allocation rule which is ε-incentive compatible at any given profile. Instead we
follow below a local bound approach, i.e. where the bound is dependent on the given profile
and we minimize this bound for any profile.
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4.1 Existence

Because each agent can manipulate an arbitrary competitive allocation rule it is natural to
ask if there is an allocation rule that is better than other from the viewpoint of manipulability.
In some recent papers this issue has been investigated by minimizing the number of profiles
in U for which the rule is manipulable (see Aleskerov and Kurbanov (1999) and Maus, Peters
and Storcken (2007a,b)), by minimizing the domain (with respect to inclusion) on which the
rule is manipulable (Pathak and Sönmez, 2011), and by finding rules that prevent the most
agents and coalitions of agents by gaining from misrepresentation (Andersson, Ehlers and
Svensson, 2010). Here, we have a somewhat different approach and instead search for rules
that minimize the maximal gain that any agent can obtain by strategic misrepresentation.
This maximal gain is given by the functions of type f is given in Theorem 2. Hence, the aim
is to identify a rule satisfying the following:

Definition 5. Let ε : U → R+.

(i) A rule ϕ is ε-incentive compatible if for any profile u ∈ U we have maxi∈N fi(ϕ, u) ≤ ε(u).

(ii) A competitive rule ψ is minimally ε-incentive compatible if for any ε′ : U → R+ and any
competitive rule ϕ which is ε′-incentive compatible, we have for any u ∈ U , ε(u) ≤ ε′(u).

Alternatively, Definition 5 means finding a competitive rule ψ such that for all u ∈ U ,

ψ = arg min
ϕ

max
i∈N

fi(ϕ, u) (3)

The following theorem establishes the existence of such rule for each profile in U . We state
the result without a proof since the result follows directly from the fact that the set F(u) is
compact.

Theorem 3. There exists a competitive allocation rule ψ solving (3) for each u ∈ U .

4.2 Quasi-Linear Utilities

To obtain more specific results, we shall consider the subclass of quasi-linear utility functions
Uq ⊂ U : u ∈ Uq if and only if for each i ∈ N there exists vi ∈ RM such that for all p ∈ RM

and all j ∈M ,
uij(p) = vij − pj .

Under quasi-linear utility functions, the following result from Svensson (2009, Proposition 2)
will be useful.8

Lemma 2. For each profile u ∈ U and all (p, x), (q, y) ∈ F(u), we have (p, y), (q, x) ∈ F(u).

Using Theorem 2 and Lemma 2, we can simplify the maximal manipulation possibility
of agent k under quasi-linear utilities as follows: for any arbitrary competitive and budget-
balanced allocation rule ϕ, any agent k ∈ N , and any u ∈ Uq, let (p, x) ∈ ϕ(u) and (pk, xk) ∈

8Furthermore, by Svensson (2009, Proposition 3), Definition 3 may be rewritten as follows on the domain
of quasi-linear utilities: ϕ is manipulable at a profile u ∈ Uq by an agent i ∈ N if there exists a profile
(ûi, u−i) ∈ Uq such that for all (p, x) ∈ ϕ(u) and all (q, y) ∈ ϕ(ûi, u−i) we have uiyi(q) > uixi(p).
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φk(u). Now by Lemma 2 we have (p, xk) ∈ F(u) and ukxk(p) = ukxkk
(p). Now we obtain

(using quasi-linearity):
fk(ϕ, u) = pxkk

− pk
xkk
.

The following result establishes that if the manipulation possibilities (defined by the func-
tion f) for one agent decreases, then the manipulation possibilities for some other agent (again
defined by the function f) must increase. Or put differently, the sum of manipulation possi-
bilities, at a given profile, is always constant independently of which competitive allocation
rules that are considered.

Theorem 4. Let ϕ and ψ be two competitive and budget-balanced allocation rules. Then
for each profile u ∈ Uq it holds that:∑

i∈N
fi(ϕ, u) =

∑
i∈N

fi(ψ, u). (4)

Proof. Let i, j ∈ N , (pi, xi) ∈ φi(u) and (pj , xj) ∈ φj(u). By Lemma 2, we have (pj , xi) ∈ F(u)
and obviously (pj , xi) ∈ φj(u). Thus, without loss of generality, we may assume xi = xj for
all i, j ∈ N . From the definition of the function f we obtain:∑

i∈N
fi(ϕ, u) =

∑
i∈N

(pxii
− pixii) =

∑
i∈N

pxii
−

∑
i∈N

pixii
,∑

i∈N
fi(ψ, u) =

∑
i∈N

(qxii
− pixii) =

∑
i∈N

qxii
−

∑
i∈N

pixii
.

Thus, (4) holds by essentially single-valuedness and Remark 1 if:∑
i∈N

pxii
=

∑
i∈N

qxii
. (5)

We have xii 6= xjj for any j ∈ N where j 6= i. Hence, by Definition 1, feasibility and budget-
balance: ∑

i∈N
pxii

=
∑

i∈N
qxii

= 0. (6)

This together with (5) yields the desired conclusion.

Under quasi-linearity there exists a competitive allocation rule where for each profile
u ∈ Uq the manipulation possibilities are equal for all agents.

Theorem 5. For each profile u ∈ Uq and there exists a competitive allocation rule ϕ where:

fi(ϕ, u) = fj(ϕ, u) for all i, j ∈ N . (7)

Proof. Let u ∈ Uq. By Lemma 2, if (p, x) ∈ F(u) and (q, y) ∈ F(u), then (p, y) ∈ F(u) and
(q, x) ∈ F(u). For this reason we shall assume in the remaining part of the proof, without
loss of generality, that the feasible assignment is constant and given by x for all competitive
allocations in F(u).

We need to show that there exists a competitive allocation (p, x) ∈ F(u) such that:

pxi − pixi = pxj − pjxj for all i, j ∈ N .
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Consider now the utility maximizing price vectors p1x1
, ..., pnxn for agents 1, ..., n, respectively,

at profile u ∈ Uq and note that they are unique by Remark 1. Since preferences are quasi-
linear, we now have for all i ∈ N and all (p, x) ∈ F(u),

pixi ≤ pxi . (8)

Thus, for any (p, x) ∈ F(u), we have
∑

i∈N pixi ≤
∑

i∈N pxi = 0. Now, obviously there exists
ε ≥ 0 such that: ∑

i∈N
(pixi + ε) = 0. (9)

Let pε ∈ RM be the price vector where pεxi = pixi + ε for each i ∈ N such that (9) holds. To
complete the proof we need to demonstrate that (pε, x) ∈ F(u). To obtain a contradiction,
suppose that (pε, x) /∈ F(u). Then:

vixi − pεxi < vjxj − pεxj for some i, j ∈ N . (10)

From the definition of pε we obtain that:

vixi − pixi − ε < vixj − pjxj − ε,

i.e. (using −pjxi ≤ −pixi from (8)),

vixi − pjxi ≤ vixi − p
i
xi < vixj − pjxj ,

which contradicts (pj , x) ∈ F(u). Hence, (pε, x) ∈ F(u), the desired conclusion.

The rule described in the previous proof can be related to the constrained equal losses rule
(Aumann and Maschler, 1985; Hokari and Thomson, 2003; Thomson, 2003) in bankruptcy
problems. To see this connection, suppose that all agents in N are asked by the mechanism
designer to select a competitive allocation at profile u ∈ Uq. Obviously, each agent k ∈ N
would suggest (or claim) an allocation (pk, xk) ∈ φk(u), i.e., a competitive allocation that
maximizes agent k’s utility. Again, as above we can fix an assignment x. Now obviously
(pk, x) ∈ φk(u) and without loss of generality, we may suppose xk = x for all k ∈ N . Now we
simply set for all k ∈ N ,

pxk = pkxk + λ(u) and λ(u) is chosen so that
∑
k∈N

(pkxk + λ(u)) = 0.

In this sense each agent incurs an equal loss of λ(u) between the chosen competitive allocation
and the allocations that maximize his utility among all competitive allocations. Setting
ε(u) = λ(u) for any u ∈ Uq, Theorem 4 implies that the above rule is minimally ε-incentive
compatible in the class of competitive rules on the domain of quasi-linear preferences.

5 Discussion

5.1 Replication of Economies

One of our motivations for our paper was that replicating the economy does not alter the
gains from manipulation of competitive and budget-balanced allocation rules. In other words,
even as the economy becomes large leaves the manipulation possibilities unchanged and in
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determining the minimally manipulable competitive and budget-balanced allocation rules we
need to do this for small economies. To formalize this point, let E = (N,M, u) denote the
original economy. Let E<t> denote the t-replica of E with tN agents (each agent i ∈ N is
replicated t times), with tM objects (each object j ∈M is replicated t times) and each replica
of agent i has i’s utility function ui (where agents have identical utilities for an object j and
its replicas). Similarly, for an allocation (p, x) of E let (p, x)<t> stand for the allocation of
E<t> where any replica of agent i ∈ N receives the replica of i’s consumption bundle (xi, pxi)
in (p, x) (and i receives (xi, pxi)).

The following observations are straightforward: if (p, x) is a competitive and budget-
balanced allocation in E, then (p, x)<t> is a competitive and budget-balanced allocation in
E<t>. Thus, for any agent k, the utility of his maximizing competitive and budget-balanced
allocations in E is smaller than or equal to the utility of his maximizing competitive and
budget-balanced allocations in E<k>. In fact, these utilities must be equal as the following
argument shows9:

Consider E and E<2> and suppose that some allocation (p, x) in E<2> maximizes agent
k’s utility among all competitive and budget-balanced allocations in E<2>. Note that (p, x)
does not need to be a 2-replica of some allocation in E. Since (p, x) is competitive, now any
two agents who receive the replica of the same object must receive identical prices. Setting
2M = M ∪ {j′ : j ∈ M}, we have pj = pj′ for all j ∈ M . But then by budget-balance
of (p, x) we must have

∑
j∈M pj = 0. Now we construct from (p, x) an allocation for E as

follows (again setting 2N = N ∪ {i′ : i ∈ N}): for any agent i ∈ N , if his replica receives
the same consumption bundle as i, then just drop i′ and his consumption bundle; otherwise
choose the agent (l or l′) who receives the same consumption bundle as i′ and assign to l the
consumption bundle of i′ and drop l′ and the one consumption bundle of i′; now l or l′ received
an object different than i′ and we repeat the procedure for this object; at some point there
will be a cycle (going back to i) and we simply keep i’s consumption bundle unchanged. Now
this gives us an allocation for E which is competitive and budget-balanced. Since we chose
an allocation with maximal utility of agent k in the set of competitive and budget-balanced
allocations in E<2>, now this utility must be identical as in φk(u).

Of course, the above argument is true for E, E<2>, E<4>, E<8>, . . . , E<2t>, . . ., i.e.
using the first fact, in E and in all replicas E<t> the maximal utility of agent k among all
competitive and budget-balanced allocations is identical. Hence, Theorem 2 applies and the
gains from manipulation remain unchanged for competitive and budget-balanced allocation
rules in E and E<t>.

5.2 Competitive and Minimal Rules

Disregarding budget-balance, there is an interesting connection between Theorem 1 and a
general non-manipulability result for competitive and minimal (or fair and maximal) alloca-
tion rules. More explicitly, as demonstrated by Andersson and Svensson (2008) and Svensson
(2009), the competitive and minimal allocation rule (described below), introduced by Sun and
Yang (2003), completely characterizes the class of competitive and non-manipulable alloca-
tion rules. The main difference between this rule and a competitive and budget-balanced rule
is that the former always selects the utility maximizing allocation for each agent k ∈ N at
any profile u ∈ U in sharp contrast to the latter rule. This is also the underlying reason why

9We omit the formal details which are available from the authors upon request.
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competitive and minimal allocation rules are globally non-manipulable whereas competitive
and budget-balanced rules are manipulable.

To adopt the competitive and minimal allocation rule, it is required that each object
j ∈ M has an exogenously given minimum price limit p

j
such that

∑
j∈M p

j
= 0. These

minimal prices are gathered in the vector p ∈ RM . Then, for a given profile u ∈ U , the

allocation (p, x) ∈ F̂(u) is competitive and minimal with respect to p if
∑

j∈M pj is minimal
subject to p ≥ p. A competitive and minimal allocation rule ϕ is a rule that always selects
competitive allocations that are minimal with respect p. Note that the allocations selected
by this rule are typically not budget-balanced.

Let φ̂k(u) be the set of utility maximizing allocations of agent k that are competitive
and minimal with respect to p at profile u ∈ U . The following shows that competitive and
minimal allocation rules always select for each agent a utility maximizing allocation in the
set of competitive and minimal allocations. This gives a deeper reason why these rules are
(globally) non-manipulable.

Theorem 6. Let ϕ be competitive and minimal with respect to p. Then for all u ∈ U and

all (p, x) ∈ ϕ(u), we have (p, x) ∈ φ̂k(u) for all k ∈ N .

Proof. Suppose that (p, x) /∈ φ̂k(u). This means that there is an allocation (q, y) ∈ F̂(u)
that is competitive and minimal with respect to p such that uiyi(q) > uixi(p). Since (p, x) is
competitive, we have:

uiyi(q) > uixi(p) ≥ uiyi(p), (11)

implying p
yi
≤ qyi < pyi . Let G = {j ∈M : qj < pj} and H = {i ∈ N : uij(p) ≥ uil(p) for all

k ∈M and some j ∈ G}.
By (11), yi ∈ G. Hence, G 6= ∅. Moreover, H 6= ∅ by competitiveness of (p, x). Suppose

now that k ∈ H. Then by competitiveness and monotonicity:

ukyk(q) ≥ ukj(q) > ukj(p) = ukxk(p) ≥ ukyk(p) for some j ∈ G.

Hence, yk ∈ G. Consequently, if k ∈ H, then yk ∈ G, implying that |H| ≤ |G|. But this is a
contradiction to (p, x) being competitive and minimal with respect to p because in this case

|H| > |G| by Lemma 4 in Andersson and Svensson (2008). Hence, (p, x) ∈ φ̂k(u).
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