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Lars Ehlers†and Alexander Westkamp‡

August 2011

Abstract

We study a general class of priority-based allocation problems with weak priority orders

and identify conditions under which there exists a strategy-proof mechanism which always

chooses an agent-optimal stable, or constrained efficient, matching. A priority structure

for which these two requirements are compatible is called solvable.

For the general class of priority-based allocation problems with weak priority orders,

we introduce three simple necessary conditions on the priority structure. We show that

these conditions completely characterize solvable environments within the class of indif-

ferences at the bottom (IB) environments, where ties occur only at the bottom of the

priority structure. This generalizes and unifies previously known results on solvable and

unsolvable environments established in school choice, housing markets and house allo-

cation with existing tenants. We show how the previously known solvable cases can be

viewed as extreme cases of solvable environments. For sufficiency of our conditions we

introduce a version of the agent-proposing deferred acceptance algorithm with exogenous

and preference-based tie-breaking.

JEL Classification: C78, D61, D78, I20.

Keywords: Weak priorities, stability, constrained efficiency, strategy-proofness.

1 Introduction

In this paper we consider various classes of priority-based allocation problems where a set of

indivisible objects is to be allocated among a finite set of agents and no monetary transfers are

available. Agents have privately known strict preferences over available objects. For any object

there is an exogenously given weak ordering specifying which agents have higher priority to be

allocated that object. We restrict attention to strategy-proof (direct) mechanisms that provide

∗We thank Benny Moldovanu, Al Roth and Utku Ünver for their useful comments and suggestions. This
research started while both authors were visiting Harvard University. We acknowledge the hospitality of HBS
and the Department of Economics. The first author thanks the SSHRC (Canada) and the FQRSC (Québec)
for financial support. The second author thanks the DAAD and the DFG for financial support.
†Département de Sciences Économiques and CIREQ, Université de Montréal, Montréal, Québec H3C 3J7,

Canada; e-mail: lars.ehlers@umontreal.ca.
‡Economics Department, University of Bonn; e-mail: awest@uni-bonn.de.
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agents with dominant strategy incentives to report preferences truthfully.1 A matching (of

agents to objects) is stable, if (i) no agent is worse off than receiving no object (individual ratio-

nality, (ii) no agent strictly prefers an unassigned object to her assignment (non-wastefulness),

and (iii) there is no agent i who strictly prefers an object o (over her assignment) that was

assigned to another agent j who has strictly lower priority for o than i (fairness).2 A stable

matching is constrained efficient, if it is not Pareto dominated by another stable matching. In

this paper we search for tractable conditions which guarantee that a priority structure is solvable

in the sense of admitting a constrained efficient and strategy-proof matching mechanism.

Important real-life examples of the class of problems we analyze are school choice, where

a student’s priority for a school is determined by objective criteria such as distance or the

existence of siblings already attending the school, the allocation of dorm rooms, where an

existing tenant is usually guaranteed priority for her room over others, and (live-donor) kidney

exchange, where a potential donor who is immunologically incompatible with her intended

recipient is only willing to give her kidney to someone else if her intended recipient receives

a compatible kidney in exchange.3 These three problems share the feature that priorities are

exogenous and (strict) priority rankings are commonly known. Furthermore, stability is an

important allocative desideratum: for the school choice problem, an unstable assignment is

susceptible to appeals by unhappy parents and may be detrimental to public acceptance of an

admissions procedure given the absence of a clear rationale for rejections at over-demanded

schools. In the dorm allocation or the kidney exchange problem, a violation of stability means

that some existing tenants/patients would have been strictly better off not participating in the

assignment procedure (staying in their old room in the former, and sparing their incompatible

donor the pain of kidney extraction in the latter case). While efficiency losses due to stability

constraints4 may thus be deemed acceptable, it is important to avoid any further efficiency losses

and thus ensure constrained efficiency of the chosen matching. Given the private information

that is inherent to the problems described above, whether a priority structure is solvable or not

is an important and practically relevant question.

The solvability of strict priority structures, where no two distinct agents can ever have equal

priority for a given object, is well known: the agent-proposing deferred acceptance (ADA) algo-

rithm of Gale and Shapley (1962) produces the unique constrained efficient matching and the

associated direct revelation mechanism is (group) strategy-proof for the agents (Dubins and

Freedman, 1981; Roth, 1982a). Similarly, for the dorm/house allocation problem with existing

tenants, the top trading cycles (TTC) algorithm produces a constrained efficient matching and

1Strategy-proofness is the most widely used incentive compatibility requirement in the area of market design
without monetary transfers (see Roth, 2008, as well as Sönmez and Ünver, 2011, for recent surveys). See
Abdulkadiroglu et al. (2006) for a fairness rationale supporting strategy-proofness. Budish and Cantillon
(2011) provide a critical perspective on the restriction to strategy-proof mechanisms.

2See Roth and Sotomayor (1990) for an excellent introduction into the theory and applications of stable
matching mechanisms.

3See Abdulkadiroglu and Sönmez (2003) for an analysis of school choice problems, Abdulkadiroglu and
Sönmez (1999) for an analysis of the dorm room allocation problem, and Roth et al. (2004) for an analysis of
the kidney exchange problem.

4Ergin (2002) shows that stability is often incompatible with full efficiency.
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gives rise to a strategy-proof direct mechanism (Abdulkadiroglu and Sönmez, 1999).5 These

positive results for two very different classes of priority-based allocation problems, one without

any ties in the priority structure and one in which almost no priority distinctions are made,

encourage the search for other solvable priority structures. This is particularly important given

that for many real-life applications, in particular school choice, priority structures do not belong

to the two known solvable classes. Unfortunately, Erdil and Ergin (2008) establish the existence

of unsolvable priority structures by presenting a simple unsolvable priority structure. The main

difficulty in priority-based allocation problems lies in resolving ties in the priority structure:

If tie-breaking does not condition on the submitted preferences of the agents, it creates addi-

tional stability constraints that can entail significant (cf. Abdulkadiroglu et al., 2009) welfare

loss. On the other hand, relying on agents’ preferences to break ties can, and sometimes will,

destroy incentives for truthful preference revelation. This raises the question of whether the

positive results for the two priority environments mentioned above are fortunate coincidences,

or examples of a larger class of solvable environments. To the best of our knowledge, this paper

is the first attempt to provide a systematic answer to this important question. Throughout

our analysis we restrict attention to priority-based allocation problems where there is only one

copy of each object. This formally excludes the school choice problem since public schools

can typically admit multiple students. Our analysis, however, also presents an important leap

towards understanding the conditions under which priority structures are solvable when more

than one copy of some or all of the objects is available.

We begin our analysis with the derivation of three simple necessary conditions for the

solvability of an arbitrary weak priority structure. The first condition is that a priority structure

should be acyclic: there should not be a situation in which, no matter who out of a group of

equal priority agents initially “wins” a tie at some object, at least one of the losing agents can

“force” the subsequent rejection of the initial winner (because no stable allocation is compatible

with keeping the initial winner in place). The other two conditions are concerned with priority

reversals : consider a group of agents i1, i2, j1, j2, who all have equal priority for some object o.

We say that a priority reversal occurs among this group of agents if there are two objects p and

q such that (a) i1 has strictly higher priority for p than j1 and j1 has strictly higher priority

for p than i2, and (b) i2 has strictly higher priority for q than j2 and j2 has strictly higher

priority for q than i1. Our second condition is that a priority structure should not contain

strong priority reversals where agent j1, whose priority for p is in between that of i1 and i2, is

different from agent j2, whose priority for q is in between that of i2 and i1. Our third and final

condition is that there should be no inconsistent weak priority reversals : if there is a (weak)

priority reversal among a group of agents i1, i2, j, who have equal priority for some object o,

5Two important special cases that were studied prior to Abdulkadiroglu and Sönmez (1999), are housing
markets (Shapley and Scarf, 1974) and house allocation (Hylland and Zeckhauser, 1979). In housing markets,
each agent is endowed with one object and Gale’s top trading cycles algorithm (TTC-algorithm) finds for each
problem its unique (Roth and Postlewaite, 1977) core matching. Roth (1982b) was the first to show that
the associated direct mechanism is strategy-proof. Ma (1994) showed that the TTC-algorithm is the unique
mechanism satisfying individual rationality, efficiency and strategy-proofness. In house allocation all agents have
equal priority for all objects. Here, the class of constrained efficient and strategy-proof mechanisms satisfying
is very large (see Papai, 2000, and Pycia and Ünver, 2011, for characterization results).
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then any other agent k with the same priority for o must either have weakly higher priority than

agent j for all objects, or weakly lower priority than agent j for all objects. We establish that

an arbitrary weak priority structure is solvable only if it is acyclic, contains no strong priority

reversals, and contains no inconsistent weak priority reversals. As a corollary, we obtain that

a priority structure which gives priority to walk-zone students is generically unsolvable.

Subsequently we restrict attention to environments in which equal priorities can only oc-

cur at the bottom of priority rankings. We show that the three necessary conditions above

completely characterize the set of solvable priority structures within this class of indifferences

at the bottom (IB) environments. Since all previously known solvable priority structures as

well as the counterexample of Erdil and Ergin (2008) fall into this class of environments, this

unifies and extends previous results on (un)solvable priority structures. This leaves us with the

question of whether there exist solvable priority structures apart from those that were already

known. To this end we show that without restrictions on how strict priority rankings vary

across the objects, there are no additional solvable environments: if any pair of agents can be

ranked either way in objects’ priority rankings, a solvable priority structure with indifferences

only at the bottom is either strict or corresponds to the house allocation with existing tenants

problem. However, there do exist solvable priority structures which allow for some variability

in strict priority rankings across objects and differ substantially from previously known solvable

structures. Our proof of sufficiency is constructive: we show first that most ties can be broken

exogenously, i.e. without relying on agents’ reports, if a priority structure is solvable but does

not correspond to the house allocation with existing tenants problem. We then introduce an

algorithm which combines the ADA-algorithm for strict priority structures with a tie-breaking

stage, where any remaining ties are broken according to agents’ (reported) preferences. The

algorithm reduces to the ADA when the priority structure is strict. In case of the house alloca-

tion with existing tenants problem, it reduces to the TTC algorithm. We show that whenever

the priority structure satisfies the three requirements of acyclicity, no strong priority reversals

and no inconsistent weak priority reversals, then our proposed algorithm yields a constrained

efficient matching and is non-manipulable by (groups of) agents.

Related Literature

In recent years several important contributions have analyzed priority-based allocation problems

with weak priority orders. Here, the most closely related paper is Erdil and Ergin (2008).

They study priority-based allocation problems with arbitrary weak priority structures. Their

main result is that whenever a stable matching is not constrained efficient, it is possible to

increase agents’ welfare via a cyclical exchange of assignments that respects stability constraints.

This leads them to propose the stable improvement cycles algorithm which finds a constrained

efficient matching for any priority-based allocation problem. While our analysis relies on their

main result, a major difference is that our proposed algorithm is strategy-proof (and constrained

efficient) for all solvable priority structures within the class of IB environments. We provide a

simple example of a solvable priority structure for which their algorithm must be manipulable.
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Abdulkadiroglu et al. (2009) show that no strategy-proof mechanism can Pareto dominate the

ADA resulting from some exogenous tie-breaking rule for all profiles of agents’ preferences. We

characterize the set of priority structures within the class of IB environments that are solvable

by exogenous tie-breaking and show that it is a strict subset of the set of all solvable priority

structures. In particular, there exist priority structures for which our proposed procedure is

guaranteed to yield a constrained efficient matching, even though there is no exogenous tie-

breaking rule which guarantees constrained efficiency of the ADA. Finally, Azevedo and Leshno

(2010) show by example that equilibrium outcomes induced by the stable improvement cycles

procedure may be Pareto dominated by the outcome of the ADA resulting from fixed tie-

breaking. It follows from our results that the priority structure in their example is unsolvable.

From the literature on priority-based allocation problems with strict priority orders the

most relevant paper Ergin (2002). He characterizes the set of strict priority structures for

which stability is compatible with efficiency by means of an acyclicity condition.6 The main

difference to our analysis is that Ergin (2002) is concerned with the compatibility of two alloca-

tive criteria for problems that are known to admit a strategy-proof and constrained efficient

mechanism.7 Furthermore, we show that his condition is stronger than the combination of our

three conditions and provide a slight extension of his main result to IB environments.

Organization of the paper

The remainder of this paper is organized as follows: Section 2 introduces the model and reviews

the most important existing results. Section 3 derives simple necessary conditions for the

solvability of general weak priority environments. In Section 4, these conditions are shown

to be sufficient for the solvability of environments where ties occur only at the bottom of

the priority structure. Section 5 concludes and discusses our results. Most of the proofs are

relegated to the Appendix.

2 Priority-Based Allocation Problems

A priority-based allocation problem is a 4-tuple (I, O,�, R) consisting of

• a finite set of agents I ⊂ N,

• a finite set of objects O,

• a priority structure �= (�o)o∈O where for each object o ∈ O, �o is a weak ordering of I,

and

6He shows that the very same condition characterizes the sets of strict priority structures for which the ADA
is strongly group strategy-proof and consistent, respectively. See Ehlers and Erdil (2010) for an extension of
Ergin’s result to priority-based allocation problems with weak priority structures.

7Several other papers have investigated consequences of the structural properties of strict priority structures,
see e.g. Kesten (2006) and Ehlers and Klaus (2006).
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• a preference profile R = (Ri)i∈I where for each agent i ∈ I, Ri is a strict ordering of

O ∪ {i}.

Given a weak ordering �o, we denote by i �o j that agent i has strictly higher priority for

object o than agent j and by i ∼o j that i has the same priority for o as j. For two subsets

J, J ′ ⊆ I, J �o J ′ means that i �o i′ for all i ∈ J and i′ ∈ J ′, and J ∼o J ′ means that i ∼o j for

all i, j ∈ J ∪J ′. Given J ⊆ I, let �o |J denote the restriction of �o to J , and � |J = (�o |J)o∈O

denote the restriction of � to J . Similarly, given a strict ordering Ri, we denote by oPip that

agent i ∈ I strictly prefers object o to object p, by oPii that i strictly prefers object o to not

being assigned any object at all, and by iPio that i strictly prefers not being assigned any

object at all than being assigned object o. If oPii, then object o is called acceptable. We often

write preferences as Ri = o1, . . . , om, which means that olPiol+1 for all l ≤ m − 1 and iPip for

all p ∈ O \ {o1, . . . , om}. For the following, Ri denotes all strict orderings of O ∪ {i} for i ∈ I,

and R = ×i∈IRi denotes the set of all preference profiles.

The sets of agents and objects as well as the priority structure �= (�o)o∈O are taken as

fixed throughout, and a priority-based allocation problem (I, O,�, R) is for short given by the

profile R = (Ri)i∈I . We will refer to the triple (I, O,�) as an environment. Apart from the

shape of the priority structure, our results depend on the environment only in so far that we

sometimes have to distinguish cases according to the numbers of agents and objects. Hence, we

will often think of an environment (I, O,�) as being given simply by its weak priority structure

� and will use the terms environment and priority structure interchangeably.

An assignment is a mapping µ : I → I ∪O such that µ(i) ∈ O ∪ {i} for all i ∈ I. Given an

assignment µ, let µ(o) := {i ∈ I : µ(i) = o}. An assignment µ is a matching, if µ(i) 6= µ(j) for

all distinct i, j ∈ I. A matching µ is stable for problem R, if it is

(i) individually rational, that is, µ(i)Rii for all agents i ∈ I,

(ii) fair, that is, there is no agent-object pair (i, o) such that oPiµ(i) and i �o i′ for some

i′ ∈ µ(o), and

(iii) non-wasteful, that is, there is no agent-object pair (i, o) such that oPiµ(i) and µ(o) = ∅.

It is important to note that only strict rankings in the priority structure matter for stabil-

ity. Intuitively, randomly breaking ties between distinct agents introduces additional stability

constraints, which may be detrimental to agents’ welfare. To formalize this intuition, we first

define the concept of Pareto dominance: given R ∈ R and two matchings µ and µ′, µ Pareto

dominates µ′ if for all i ∈ I, µ(i)Riµ
′(i), and µ(j)Pjµ

′(j) for at least one j ∈ I. A matching µ

is efficient, if there is no other matching which Pareto dominates it. As shown by Ergin (2002),

stability is often incompatible with efficiency. However, given the finiteness of the problem

there always exists (at least one) stable matching which is not Pareto dominated by any other

stable matching with respect to the welfare of the agents. We call a matching with this prop-

erty constrained efficient and given a problem R, we denote by CE�(R) the set of constrained

efficient matchings. If priorities are strict, CE�(R) contains exactly one matching which can
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be found using the agent-proposing deferred acceptance (ADA) algorithm that we describe in

Section 2.2. In the presence of ties in the priority structure there may, however, be multi-

ple constrained efficient matchings. Furthermore, as discussed in Ehlers (2007) and Erdil and

Ergin (2008), one cannot in general find a constrained efficient outcome by first exogenously,

i.e. irrespective of submitted preferences, breaking all ties and then conducting the resulting

ADA (for strict priority structures). Erdil and Ergin (2008) develop an algorithm which always

finds a constrained efficient matching. Their construction is based on the observation that if

a stable matching µ is not constrained efficient, then it is possible to increase welfare of the

agents via a cyclical exchange that respects stability constraints. More formally, let µ be a

stable matching for the problem R. Then agent i desires object o at µ if oPiµ(i). For each

object o, let Do(µ) denote the set of highest �o-priority agents among those who desire o at µ.

A stable improvement cycle (SIC) of µ at R consists of m distinct agents i1, . . . , im such that

for all l = 1, . . . ,m, il ∈ Dµ(il+1)(µ) (where m + 1 := 1). Erdil and Ergin (2008) show that a

stable matching µ is constrained efficient if and only if µ admits no stable improvement cycle

(SIC) of µ at R. As they point out, this implies that a constrained efficient matching can be

found by first breaking all ties in the priority structure arbitrarily, running the associated ADA

algorithm, and then successively implementing stable improvement cycles.

A matching mechanism is a function f that assigns a matching f(R) to each problem

R ∈ R. Given a rule f and a profile R, we denote agent i’s allotment by fi(R). Given a set of

agents J ⊆ I and a profile R ∈ R, R−J denotes restriction of R to I \ J . A mechanism f is

group strategy-proof, if for all J ⊆ I and all preference profiles R, there does not exist a joint

manipulation R̃J ∈ ×i∈JRi such that fi(R̃J , R−J)Pifi(R) for all i ∈ J . It is strategy-proof, if it

is group strategy-proof for all groups that contain only one agent. A mechanism f is strongly

group strategy-proof, if for all J ⊆ I and all preference profiles R, there does not exist a joint

manipulation R̃J ∈ ×i∈JRi such that fi(R̃J , R−J)Rifi(R) for all i ∈ J and fj(R̃J , R−J)Pjfj(R)

for at least one j ∈ J . Finally, a mechanism f is constrained efficient, if f(R) ∈ CE�(R) for

all preference profiles R.

An environment (I, O,�) is solvable, if there exists a strategy-proof and constrained efficient

matching mechanism f . The next example, due to Erdil and Ergin (2008), shows that unsolvable

environments exist.

Example 1 (Example 2 of Erdil and Ergin (2008)). Let I = {1, 2, 3} and O = {o, p, q}, and �
be given by

�o �p �q
3 1 3

1, 2 2 2

3 1

Erdil and Ergin (2008) show that � is unsolvable.

Our main research question is whether such examples are an exception or the rule in priority-

based allocation problems with weak priority structures. We will attempt to answer this ques-

tion via a characterization of solvable priority structures by means of simple and tractable
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conditions.

2.1 A taxonomy of environments

The next definition summarizes several classes of priority structures, or environments, that will

play an important role for our analysis.

Definition 1. An environment (I, O,�) is

(i) a strict (S) environment, if there is no object o ∈ O such that i ∼o j for two distinct

i, j ∈ I.

(ii) a house allocation with existing tenants (HET) environment, if there is no object o ∈ O,

such that {i, j} �o k for three distinct agents i, j, k ∈ I.

(iii) an indifferences at the bottom (IB) environment environment, if there is no object o ∈ O
such that i ∼o j �o k for three distinct agents i, j, k ∈ I.

The interpretation and motivation for the first two classes is straightforward: Strict envi-

ronments were the dominant assumption in the school-choice literature prior to Erdil and Ergin

(2008) and Ehlers (2007). The class of HET environments has been introduced by Abdulka-

diroglu and Sönmez (1999). The interpretation here is that an object o such that i �o j for

some i ∈ I and all j ∈ I \ {i} is owned, or occupied, by agent i, while an object o such that

i ∼o j for all i, j ∈ I is unoccupied and owned by all of the agents jointly. Two special cases

of HET environments that have been widely studied are housing markets (Shapley and Scarf,

1974) and house allocation problems (Hylland and Zeckhauser, 1979). A housing market is a

special case of a HET environment where each object/house is occupied and each agent owns

exactly one object. In a house allocation problem, no object is occupied (i.e. i ∼o j for all

i, j ∈ I and all o ∈ O).

The third class of environments is new to this paper and is the most general of the three

classes described above. One interpretation for this class is that objects are specialized tasks

and an agent’s priority for a task represents her task-specific (commonly known) skill. Each

task has a lower bound on qualifications, above which agents are ranked strictly according to

their qualification, while all agents who fall below the threshold are considered equally worse.8

An interesting special case of IB environments is the one where the set of objects O can be

partitioned into two sets O1 and O2, such that objects in O1 have a strict priority ranking of

agents, while objects in O2 assign equal priority to all agents. In the context of school choice,

one may think of “schools” in O1 as selective schools for which priorities are determined by

scores in some pre-school examination. Schools in O2 on the other hand are “open-access” in

the sense that they do not offer prioritized access to anyone.9 In Section 3 we provide a full

8Interestingly, Ehlers (2002) characterized IB environments as the unique maximal domain of preferences
(containing all strict preferences) such that a strongly group strategy-proof and efficient mechanism exists.

9Subsequently to this paper, Abdulkadiroglu (2011) has studied this setting. He refers to schools/objects in
O1 as stability constrained and to objects in O2 as unconstrained. His main interest lies in the construction of
a constrained efficient mechanism that combines the ADA and the TTC procedures.
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characterization of solvable environments within the class of IB environments that generalizes

and unifies all previously known results on (un)solvable priority structures.

Remark 1. (1) Strictly speaking, our definition of HET environments are a slight general-

ization of those studied in Abdulkadiroglu and Sönmez (1999), since they assume that

each agent may own at most one object, which is not required in (ii) of Definition 1.

However, their proofs apply almost verbatim to the HET environments we consider here

and we will henceforth neglect this subtle difference.

(2) For HET environments, constrained efficiency is equivalent to the combination of the

requirements of individual rationality for owners, i.e. no agent should be worse off than

consuming one of the objects she owns, and efficiency. It is obvious that individual ratio-

nality together with efficiency implies constrained efficiency. For the other direction, note

that whenever an individually rational matching is not efficient, we can find a matching

that Pareto improves on it. Given that the old matching was individually rational, the

Pareto improving matching must clearly also have this property.

2.2 Two Mechanisms for Solvable Environments

For strict environments, the agent-proposing deferred acceptance algorithm (ADA-algorithm)

of Gale and Shapley (1962) plays a central role.10 Given a strict environment � and a problem

R, the ADA-algorithm proceeds as follows:

Algorithm 1: ADA

Round 1: Each agent applies to her most preferred acceptable object.

Each object tentatively accepts the proposal from the highest priority agent and rejects

all others.

If all rejected agents have applied to all acceptable objects, stop. Otherwise, proceed to

Round 2.
...

Round t: Each agent who was rejected by some object in Round t − 1, applies to her next

most preferred acceptable object (if any).

Each object tentatively accepts the proposal from the highest priority agent and rejects

all others.

If all rejected agents have applied to all acceptable objects, stop. Otherwise, proceed to

Round t+ 1.
...

10See Roth (2008) for a recent survey of deferred acceptance algorithms in theory and practice.
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Let ADA�(R) denote the matching chosen by the above algorithm when the profile of

submitted preferences is R and the strict priority structure is given by �. It is well known that

if � is strict, then for any profile of strict preferences R, ADA�(R) is the unique constrained

efficient matching (Gale and Shapley, 1962) and ADA� is group strategy-proof (Dubins and

Freedman, 1981; Roth, 1982a).

For HET environments, the top-trading cycles algorithm (TTC-algorithm) of Abdulka-

diroglu and Sönmez (1999) plays a central role. Given a HET environment � and a problem

R, the TTC-algorithm proceeds as follows:

Algorithm 2: TTC

Round 1: Construct a directed graph on I∪O by letting each agent point to her most preferred

acceptable object (or herself, if she does not find any object in O acceptable), each

occupied object point to its owner, and all other objects point to the highest indexed

agent.

Assign each agent who belongs to a directed cycle of this graph to the object she points

to (or let this agent be unassigned, if she points to herself), remove all agents and objects

who belong to a directed cycle, and let I2 and O2 be the sets of remaining agents and

objects.

If I2 = ∅, stop. Otherwise, proceed to Round 2.
...

Round t: Construct a directed graph on It∪Ot by letting each agent point to her most preferred

acceptable object in Ot (or herself, if she does not find any object in Ot acceptable), each

object in Ot occupied by an agent in It point to its owner, and all other objects point to

the highest indexed agent in It.

Assign each agent who belongs to a directed cycle of this graph to the object she points

to (or let this agent be unassigned, if she points to herself), remove all agents and objects

who belong to a directed cycle, and let It+1 and Ot+1 be the sets of remaining agents and

objects.

If It+1 = ∅, stop. Otherwise, proceed to Round t+ 1.
...

Let TTC�(R) denote the matching chosen by this algorithm when the profile of submitted

preferences is R and the HET environment is given by �. It is well known that TTC� is

individually rational, efficient and (strongly group) strategy-proof (Abdulkadiroglu and Sönmez,

1999).1112

11Papai (2000) shows more generally that all rules belonging to the class of hierarchical exchange rules, such
as the TTC procedure, are strongly group strategy-proof and efficient.

12For the intermediate case of HET environments where no agent owns more than one object, Sönmez and
Ünver (2010) show that the TTC-algorithm can be characterized by individual rationality, efficiency, strategy-
proofness, weak neutrality, and consistency.
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For the case of housing markets, the above algorithm reduces to Gale’s TTC-algorithm

described in Shapley and Scarf (1974). It finds the unique strong core allocation (Roth and

Postlewaite, 1977) and the TTC mechanism is the unique individually rational, efficient and

strategy-proof mechanism (Ma, 1994).13 By Remark 1, the TTC mechanism is the unique

constrained efficient and strategy-proof rule for housing markets.

For house allocation problems there is a large class of efficient and (strongly group) strategy-

proof mechanisms studied in e.g. Papai (2000) and Pycia and Ünver (2009). In this case the

TTC-algorithm reduces to a serial dictatorship where agents take turns in choosing their most

preferred object that is still available, with the highest indexed agent taking the first turn, the

second highest the second, and so on.14

3 Solvability: Necessary conditions for general environ-

ments

In this section we introduce three simple (and independent) necessary conditions for the solv-

ability of an arbitrary weak priority structure. Our first condition is concerned with situations

where a pair of distinct agents have equal priority for an object, for which at least one other

agent has strictly higher priority.

Definition 2 (Cyclic ties). A tie i1 ∼o i2 between two distinct agents i1, i2 ∈ I is strongly

cyclic, if there exist agents j1, j2 ∈ I \ {i1, i2} and objects p1, p2 such that either

(a) i1 �p1 j1 �o i1 and i2 �p2 j2 �o i2, with p1 = p2 if j1 = j2, or

(b) {i1, i2} �p1 j1 �p2 j2 �o i1.

A weak priority structure � is acyclic, if it does not contain a strongly cyclic tie.

Note that HET environments do not have strongly cyclic ties, since for each object there

is at most one agent (the owner) who has strictly higher priority than any other agent. In

Example 1 the tie 1 ∼o 2 is strongly cyclic (according to case (a) above with p1 = p2 and

j1 = j2) because {1, 2} �p 3 �o 1. We illustrate the other types of strongly cyclic ties in the

following example.

Example 2 (Cyclic ties). Let I = {1, 2, 3, 4}, O = {o, p, q}, �, and �′ be given by

(a):

�o �p �q
3 4 3

4 1 2

1, 2 3 4

2 1

and (b):

�′o �′p �′q
4 4 3

1, 2, 3 1 4

2 1

3 2

13Strategy-proofness of the TTC for housing markets was first established by Roth (1982b).
14For a characterization of serial dictatorships, see Svensson (1999).
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For � the tie 1 ∼o 2 is strongly cyclic in the sense of (a) of Definition 2 because 1 �p 3 �o 1

and 2 �q 4 �o 2.

For �′ the tie 1 ∼′o 2 is strongly cyclic in the sense of (b) of Definition 2 because {1, 2} �′p
3 �′q 4 �′o 1.

Next, we introduce two conditions that are concerned with larger groups of agents who

have identical priority for a given object. These conditions introduce two important measures

of variability within the priority structure that will be seen to play a key role for determining

its solvability.

Definition 3 (Priority reversals). A priority reversal is a seven-tuple (i1, i2, j1, j2, o, p1, p2) such

that i1 ∼o i2 ∼o j1 ∼o j2, i1 �p1 j1 �p1 i2, and i2 �p2 j2 �p2 i1.
A priority reversal is strong if j1 6= j2, and weak if j1 = j2.

In the following, we always denote weak priority reversals by (i1, i2, j1, o, p1, p2) and refer to

j1 as the in-between agent. Before proceeding, note that HET environments have no priority

reversals, since there are at most two indifference classes in the priority ranking of an object.

Definition 4 (Inconsistent weak priority reversals). A weak priority reversal (i1, i2, j1, o, p1, p2)

is inconsistent, if there is an agent j2 ∈ I \ {i1, i2, j1} such that {i1, i2, j1} ∼o j2, {i1, i2, j1} �p1
j2, {i1, i2, j1} �p2 j2, and {i1, i2} �p3 j2 �p3 j1 for some p3 ∈ O \ {p1, p2}.

We illustrate the last two definitions with the following example.

Example 3 (Priority reversals). Let I = {1, 2, 3, 4}, O = {o, p, q, r}, �, and �′ be given by

�o �p �q �r
1, 2, 3, 4 1 2 1

3 4 2

2 1 3

4 3 4

�′o �′p �′q �′r
1, 2, 3, 4 1 2 1

3 3 2

2 1 4

4 4 3

For � there is a strong priority reversal because 1 �p 3 �p 2 and 2 �q 4 �q 1 (and 1 ∼o 2 ∼o
3 ∼o 4).

For �′ there is an inconsistent weak priority reversal because 1 �′p 3 �′p 2 �′p 4, 2 �′q 3 �′q
1 �′q 4, and {1, 2} �′r 4 �′r 3 (and 1 ∼′o 2 ∼′o 3 ∼′o 4).

We are now ready to present the first main result of this paper.

Theorem 1. An environment � is solvable only if

(i) � is acyclic,

(ii) � has no strong priority reversals, and

(iii) � contains no inconsistent weak priority reversal.
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We briefly sketch the intuition underlying the necessity of no strongly cyclic ties : Suppose

there are two distinct agents i1, i2 such that i1 ∼o i2 for some object o and such that there

exists another object p and a third agent j with {i1, i2} �p j �o i1 ∼o i2. Let f be an arbitrary

constrained efficient matching mechanism. Furthermore, suppose that when the preference

profile is such that i1 and i2 are both only interested in o and j ranks p higher than o, i2 is left

unmatched by f . If f was strategy-proof, it should not assign i2 to o, when she claims instead

that o is her first and p is her second choice. But since i2 �p j, the only other stable allocation

in this case would be one where i2 receives p and j receives o. Since i2 and j form a stable

improvement cycle, this allocation is not constrained efficient. Hence, f would have to assign i2

to o, so that f cannot be strategy-proof. The reasoning behind the other necessary conditions

is related but more complicated.

We now discuss two interesting corollaries of Theorem 1. First, we consider an application

to school choice. Here, distance to school is an important criterion for determining a student’s

priority. This is usually implemented by defining some radius around the school and then clas-

sifying all students living within this radius as belonging to that school’s walk-zone.15 Assume

for simplicity that we are dealing with the pure walk-zone priority case, where students living

within the walk-zone of a school have strictly higher priority for that school than all others,

and no further priority distinctions between students are made. More formally, (I, O,�) is a

pure walk-zone environment, if for each object o there is a (possibly empty) set Wo ⊆ I such

that Wo �o I \Wo, and i ∼o j for all i, j such that either i, j ∈ Wo, or i, j ∈ I \Wo. The

following is an immediate corollary of Theorem 1.

Corollary 1. Suppose (I, O,�) is a pure walk-zone environment.

If there exist two objects o, p such that |Wo \Wp| ≥ 2 and Wp \Wo 6= ∅, then (I, O,�) is

not solvable.

Proof. Take two distinct students i1, i2 ⊆ Wo \Wp and some student i3 ∈ Wp \Wo. Then we

have i1 ∼o i2 �o i3 as well as i3 �p i1 ∼p i2, so that i1 ∼p i2 is a strongly cyclic tie. By Theorem

1, � is not solvable.

Thus, if a school choice authority wants to impose a walk-zone priority structure, it will gen-

erally have to sacrifice either constrained efficiency or strategy-proofness. The second corollary

is concerned with the following question: what is the maximum number of objects (students)

such that an environment is always solvable?

Corollary 2. Whenever there are at least three agents in I and at least two objects in O, there

exists a weak priority structure � such that (I, O,�) is unsolvable.

While one may have suspected that with two objects one of the objects could always be

used to break any ties at the other object, this is not generally true since even with two objects

there is a possibility of strongly cyclic ties. Thus, except for trivial environments, one always

has to restrict the priority structure to guarantee solvability.

15See e.g. Abdulkadiroglu et al. (2006) for a study of the school choice mechanism in Boston, where walk-zones
play an important role.
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4 IB Environments: Full Characterization

In this section we focus on IB environments. As discussed above, these environments generalize

all previously known solvable environments. The following is the main result of this section.

Theorem 2. An IB environment � is solvable if and only if

(i) � is acyclic,

(ii) � has no strong priority reversals, and

(iii) � contains no inconsistent weak priority reversals.

The necessity part of this result follows immediately from our first main result and we now

provide a detailed outline of the sufficiency part. While the full details of the proof are a bit

involved and relegated to the Appendix, it is relatively straightforward to describe a matching

mechanism that is strategy-proof and constrained efficient for all solvable IB environments.

We first describe the structural implications of solvability, i.e. the constraints imposed by

acyclicity, no strong priority reversals, and no inconsistent weak priority reversals on the shape

of the priority structure. We use these constraints to first break most of the ties exogenously and

then resolve any remaining ties using an ADA-algorithm with preference-based tie-breaking.

For ease of exposition, we make one more assumption which requires additional terminology.

Call a set of agents J ⊆ I connected (with respect to � |J), if there is no strict subset J̃ ⊂ J

such that J̃ �o J \ J̃ for all objects o ∈ O. The following assumption will be maintained

throughout the main body of this text.

Assumption 1. The set of agents I is connected.

As we detail in the discussion section, this is without loss of generality for our purposes. Note

that for HET environments, connectedness requires that at least one of the objects is occupied

(otherwise, i ∼o j for all i, j ∈ I) and that all agents own at least one of the objects (otherwise,

all agents who own at least one of the objects always have weakly higher priority than everyone

else). While this formally excludes e.g. the house allocation problem, our analysis can easily

be modified to handle such cases, as we show in the discussion section. Before proceeding,

it is instructive to compare connectedness with the following stronger notion of variability: A

priority structure is perfectly pairwise variable, if for any pair of distinct agents i and j there exist

two objects o and p such that i �o j and j �p i. We will see shortly that connectedness does

allow for solvable priority structures that differ substantially from HET and strict environments.

However, under the stronger assumption of perfect pairwise variability the set of solvable IB

environments only consists of these two polar cases.

Corollary 3. Let |I| ≥ 4 and � be a perfectly pairwise variable IB environment.

If � is solvable, then either � is a HET environment or � is a strict environment.

Thus, to obtain solvable environments outside the two discovered by the previous literature

one has to restrict the variability of the priority structure. The next subsections show in detail

how this can be achieved.
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4.1 Structural implications of solvability

In this subsection we derive the basic implications of the three necessary conditions for IB

environments. In particular, we show that these conditions place stringent restrictions on

which groups of agents can be involved in ties and how the priorities within a group of tied

agents can vary across the priority structure. Some additional terminology and notation will be

necessary: for all objects o and all k, let rk(�o) denote the set of agents who have kth highest

priority for o, i.e. |{i ∈ I : i �o j}| = k − 1 for all j ∈ rk(�o). We omit set brackets whenever

rk(�o) is a singleton. For object o, let Ko denote the largest integer k such that rk(�o) is a

singleton. Note that since � is an IB environment, rk(�o) is a singleton for all k ≤ Ko. Let

κ := maxo∈OKo be the largest integer k such that rk(�o) is a singleton for some o ∈ O. Note

that an IB environment � is a HET environment if and only if κ = 1. For any k = 1, . . . , κ, let

Lk := ∪{o∈O:k≤Ko}rk(�o)

be the set of agents who have unique kth highest priority for at least one of the objects and let

Lk := Lk \ (L1 ∪ . . . ∪ Lk−1)

be the set of agents who have unique kth highest priority for at least one object and always

rank (weakly) below at least k − 1 agents. For notational convenience, we set L0 = L0 = ∅.
The sets Lk can be thought of as level sets of the priority structure and play an important role

in our subsequent analysis. Now consider an arbitrary agent i ∈ I. Since I is connected, there

is a unique k such that i ∈ Lk. We refer to this k as agent i’s priority level and denote it by ki.

Note that higher priority levels are associated with lower priorities for the objects. Finally, let

K be the maximal priority level among all agents, i.e. the largest integer k such that Lk 6= ∅.
It turns out that two particular priority levels play a key role for solvable priority structures

and these are defined next.

Definition 5. Let � be an IB environment.

(i) The threshold of �, denoted by KT , is either the largest integer k such that at least one

agent i ∈ L1 ∪ . . .∪Lk has (k+ 3)rd highest priority for some object o ∈ O, or KT = 0 if

no such integer exists.

(ii) The floor of �, denoted by KF , is the smallest integer k greater than KT such that

Lk ∪ . . . ∪ LK is connected.

For agents with priority levels higher than the threshold, priorities vary by at most three

ranks within the strict part of the priority structure. Agents with priority levels higher than the

floor always have weakly lower priority than agents whose priority level is between the threshold

and the floor. To get some intuition for these definitions, consider the following example.

Example 4. Consider a priority-based allocation problem with eight agents 1, . . . , 8, six objects

o1, o2, p1, p2, p3, p4, and a priority structure given by the following table.
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�o1 �o2 �p1 �p2 �p3 �p4
1 2 1 2 1 2

4 3 3 3 3 3

3 4 4 4 4 4

2, 5, 6, 7, 8 1, 5, 6, 7, 8 5 1 2 1

2 6 5 5

6 5 7 8

7 8 6 6

8 7 8 7

For this example we have L1 = {1, 2}, L2 = {3, 4}, L3 = ∅, L4 = {5}, L5 = {6}, and

L6 = {7, 8}. Note that K = 6 and κ = 8. The threshold here is KT = 2, since (a) 2 has

unique highest priority for objects o2, p2, and p4, but ranks only 5th at object p1, and (b) for all

agents apart from 1 and 2, priorities vary by at most three ranks within the strict part of the

priority structure. The floor in this example is KF = 3 since (a) L3 ∪ L5 ∪ L6 = {5, 6, 7, 8} is

connected, and (b) L2 ∪ . . . ∪ L6 = {3, 4, 5, 6, 7, 8} is not connected since 3 and 4 have strictly

higher priority than agents 5, . . . , 8 for all objects.

The next lemma shows that any pair of agents whose priority levels are smaller than the

floor must always be strictly ranked.

Lemma 1. If � is a solvable IB environment, then all agents with priority levels smaller than

the floor must always be strictly ranked, that is, � |L1∪...∪L(KF−1)
must be strict.

Note that for HET environments we always have KT = 0 and KF = 1 so that the last

lemma is vacuously satisfied. The last result implies that we can partition the agents into two

groups as follows: agents in IS = L1 ∪ . . . ∪ L(KF−1) must always be strictly ranked, while

ties can potentially occur between agents in IT = I \ IS. In the above Example 4 we have

IS = {1, 2, 3, 4} and IT = {5, 6, 7, 8}. Note that for any agent i ∈ IS, there must exist an agent

j ∈ IS such that i �o j for some object o.16 By analogy with the above definitions, let Lk(IT )

be the set of agents in IT who have unique kth highest priority among agents in IT , but never

rank higher. For agent i ∈ IT , i’s priority level within IT is the (unique) k such that i ∈ Lk(IT )

and is denoted by ki(IT ). Finally, let K be the largest integer k such that Lk(IT ) 6= ∅. With

these preparations we have the following.

Lemma 2. Let � be a solvable IB environment such that κ > 1 and |IT | ≥ 4.

Then we must have

(i) |L1(IT )| = 2,

(ii) |Lk(IT )| = 1, for all k ∈ {2, . . . , K − 1}, and

16By definition, there is an object o such that i = rk(�o) for some k ≤ KF − 1. If there is no agent j ∈ IS
such that i �o j, it has to be the case that k = KF − 1 = |IS |. If I \ IS 6= ∅, we obtain a contradiction to
connectedness, since no agent in I \ IS can ever rank above an agent in IS . Since I = IS is connected, there
has to be some p ∈ O such that i �p j for some j ∈ I.
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(iii) |LK(IT )| ∈ {1, 2}.

Hence, level sets below the threshold have to be small. Note that this lemma implies

|IT | ∈ {K + 1, K + 2}. In Example 4 we have L1(IT ) = {5, 6}, L2(IT ) = {7, 8}, and K = 2.

4.2 Exogenous tie-breaking

It is intuitively clear, that the main obstacle to constrained efficiency is that we sometimes

have to break ties on the basis of agents’ preferences. We now show that for a solvable IB

environment that is not a HET environment, most ties in the priority structure can be broken

exogenously. The main idea is very similar to that of a serial dictatorship in the sense that we

want to break ties in favor of agents with lower priority levels (remember, that lower priority

levels mean a higher priority for obtaining the objects). For the following discussion, we assume

that � is a solvable environment that is not a HET environment, i.e. κ > 1. Formally, we

construct an almost strict priority structure �′ from � by setting, for each object o ∈ O, i �′o j
if and only if either i �o j, or i ∼o j and one of the following conditions is satisfied:

(1) i ∈ IS and j ∈ IT
(2) i, j ∈ IT and ki(IT ) < kj(IT )

(3) i, j ∈ IT , |IT | ≥ 3, ki(IT ) = kj(IT ) = 1, and i ∈ r1(�p |IT ) ∪ r2(�p |IT ) for all p ∈ O17

(4) {i, j} = IT , IS 6= ∅, and IS �p IT \ {i} for all p ∈ O
To illustrate the exogenous tie-breaking procedure we calculate the resulting semi-strict

priority structure for a simple example.

Example 5 (Example 4 continued). In this case we have that IS = {1, 2, 3, 4} and IT =

{5, 6, 7, 8}. Furthermore, L1(IT ) = {5, 6}, L2(IT ) = {7, 8}, and 5 always ranks at least second

among agents in IT . Hence, the exogenous tie-breaking procedure would yield (we only report

priority rankings of objects which initially had ties):

1 �′o1 4 �′o1 3 �′o1 2 �′o1 5 �′o1 6 �′o1 7 ∼′o1 8

and

2 �′o2 3 �′o2 4 �′o2 1 �′o2 5 �′o2 6 �′o2 7 ∼′o2 8.

We now investigate the conditions under which two distinct agents can remain with equal

priorities for some of the objects after the exogenous tie-breaking stage. Such ties will then be

broken by the procedure discussed in the next subsection.

Lemma 3. Let � be a solvable IB environment such that κ > 1 and |I| ≥ 4. Suppose i1 and i2

are two distinct agents such that i1 ∼′o i2 for some object o ∈ O.

Then there is a unique agent ji1,i2 ∈ I \ {i1, i2} for whom there exist two objects p1, p2 ∈ O
such that i1 �p1 ji1,i2 and i2 �p2 ji1,i2. Furthermore, for all objects q ∈ O,

17Lemma 6 (b) in Appendix B shows that this rule can never result in two self contradictory tie-breaking
recommendations.
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(1) if i1 �q ji1,i2, then ji1,i2 �q i2,
(2) if i2 �q ji1,i2, then ji1,i2 �q i1, and

(3) I \ {ji1,i2} �q {i1, i2}.

This lemma has important implications for the set of agents who can remain tied after our

exogenous tie-breaking procedure. In the following, we denote by I0 the set of agents who are

always strictly ranked by �′ and by I1 the set of agents who have equal priority for at least

one of the objects, i.e. I0 := {i ∈ I : i �′o j for all j ∈ I \ {i}, o ∈ O} and I1 = I \ I0.

Remark 2. The above results have strong implications for the structure of I0 and I1 that will

be helpful for the analysis below.

(1) For HET environments we have I0 = ∅ and I1 = I, since no ties are broken exogenously.

(2) For solvable IB environments with κ > 1, our exogenous tie-breaking procedure guarantees

that whenever |I| ≥ 4 at most two agents can be involved in ties with respect to �′, i.e.

|I1| ≤ 2:

– For the case of |IT | ≥ 4, Lemma 3 implies that if there is an object o such that

i ∼o j for the two agents i, j ∈ L1(IT ), at least one of them must always have at

least second highest priority among agents in IT . Hence, we would have set i �′o j
so that we obtain I0 = I \ LK(IT ) as well as I1 = LK(IT ). By Lemma 2, we know

that |LK(IT )| ≤ 2 whenever |IT | ≥ 4.

– If |I| ≥ 4 and |IT | = 3, there must either be an agent i ∈ IT who always has at least

second highest priority among agents in IT or we must have i �o j for all i, j ∈ IT .

To see this, suppose to the contrary that i1 ∼o i2 for some object o and two distinct

agents i1, i2 ∈ IT , even though each agent in IT has third highest priority for at least

one of the objects with respect to � |IT . By the rules for exogenous tie-breaking

introduced above, we must have i1 ∼′o i2. Let j ∈ IT \ {i1, i2} be the third agent in

IT . Since every agent in IT has third highest priority for at least one of the objects

with respect to � |IT , there is an object p such that {i1, i2} �p j. Since i1 ∼′o i2 and

|I| ≥ 4, this is a contradiction to Lemma 3.

4.3 ADA with endogenous tie-breaking

We are now ready to describe a matching mechanism which is constrained efficient and (group)

strategy-proof whenever the priority structure satisfies conditions (i)-(iii) of Theorem 2. The

mechanism collects a (strict) preference profile R from the agents and computes an outcome

using the agent-proposing deferred acceptance algorithm with endogenous tie-breaking (ADA-

ETB) described below. This algorithm combines the ADA for strict priority structures with

a tie-breaking routine, where temporary assignments are used to break remaining ties. For

the following discussion, fix a weak priority structure � that is weakly acyclic, has no strong

priority reversals and contains no inconsistent weak priority reversal. Let �′ be the priority
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structure obtained by the exogenous tie-breaking procedure described in the last subsection

and remember that I0 denotes the set of agents who are always strictly ranked according to

�′ and that I1 = I \ I0. We now describe how the ADA-ETB proceeds for an arbitrary strict

preference profile R.

Algorithm 3: ADA-ETB

Round 0: Apply the ADA to the problem (I0,�′ |I0 , RI0). Let µ0 be the resulting matching

and proceed to Round 1.

Round 1: Each agent in I1 applies to her most preferred object.

Each object o compares the set of new applicants in this round with the set of applicants

temporarily matched to it under µ0 (if any), temporarily admits all highest priority agents

with respect to �′o and rejects all others.

Let µ1 be the resulting temporary assignment.

If one of the rejected agents has not yet applied to all acceptable objects, go to

Round 2.

If all rejected agents have applied to all acceptable objects and µ1 is a matching,

stop.

In any other case, use routine TB(µ0, µ1) to determine a rejection and go to Round

2.
...

Round t: Each agent i ∈ I who was rejected by some object in Round t − 1 applies to her

next most preferred acceptable object (if any).

Each object o compares the set of new applicants in this round with the set of applicants

temporarily matched to it under µt−1 (if any), temporarily admits all highest priority

agents with respect to �′o and rejects all others.

Let µt be the resulting assignment.

If one of the rejected agents has not yet applied to all acceptable objects, go to

Round t+ 1.

If all rejected agents have applied to all acceptable objects and µt is a matching,

stop.

In any other case, use routine TB(µ0, . . . , µt) to determine a rejection and go to

Round t+ 1.
...

If there is no other way for the main algorithm to proceed, a tie-breaking stage is invoked.

For the description of this procedure remember that we assume I ⊂ N throughout. We say that

agent i is rejected by o in favor of agent j in round t, if i is rejected by o in round t, i /∈ µt(o),
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and j ∈ µt(o). Note that this notion of being rejected in favor of another agent only refers to

rejections that are issued outside the tie-breaking routine. Next, we describe the tie-breaking

routine.

Tie-breaking Routine TB(µ0, . . . , µt):

If κ > 1, go to (TB.1). Otherwise go to (TB.2).

(TB.1) Let o be an object such that |µt(o)| ≥ 2.

If |µt(o)| = 3, o rejects the agent with the lowest index among those temporarily matched

to it.

If µt(o) = {i1, i2} for two distinct i1, i2 ∈ I with i1 > i2, o rejects i1 if either

(a) there is a round s < t in which ji1,i2 was rejected by an object in favor of i2, or

(b) µt(ji1,i2) ∈ O and {i2, ji1,i2} �µt(ji1,i2 ) i1,
and o rejects i2 in any other case.

(TB.2) Let J ⊆ I be the set of agents i such that µt(i) ∈ O and Q ⊆ O be the set of objects

o such that µt(o) 6= ∅, and go to (1).

(1) Construct a directed graph on J ∪Q by letting

- each i ∈ J such that µt(i) ∈ Q point to µt(i),

- each o ∈ Q whose owner is in J point to its owner, and

- each o ∈ Q whose owner is not in J point to the highest indexed agent in J .18

Go to (2).

(2) If there is no cycle, go to (3).

Otherwise, let C = {j1, p1, . . . , jN , pN} be a cycle,19 set J := J \ {j1, . . . , jN} and

Q := Q \ {p1, . . . , pN}, and go back to (1).

(3) Each object o /∈ Q rejects all agents i ∈ J such that µt(i) = o.

Given a preference profile R and a solvable IB environment �, let AT�(R) be the matching

chosen by the ADA-ETB algorithm. Since �′ may still contain ties, the ADA-ETB allows

for temporary violations of capacity constraints in the sense that it allows two or more equal

priority agents to be temporarily matched to the same object. Only if there is no other way

for the algorithm to proceed, is an equal priority (with respect to �′) agent rejected in favor

of another equal priority agent in the tie-breaking routine. In case of a HET environment, the

decision who to reject is determined by (TB.2). Here, all agents in J point to their (temporarily)

assigned object in the first iteration of (1). If µt(i) =: o is contained in a cycle C that does not

contain i, then i does not point anywhere in subsequent iterations of (1) and is rejected by o

once the procedure reaches (3) (and stops). If the environment is not a HET environment, the

decision who to reject is determined by (TB.1) on basis of the priority structure, temporary

assignments, and the history of rejections in the course of the main algorithm. Note that our

earlier results imply that |µt(o)| = 3 is possible only when |I| = 3. If µt(o) = {i1, i2} for two

18Note that this trivially includes all unowned objects.
19This means that for all n ∈ {1, . . . , N}, agent jn points to object pn and object pn points to agent jn+1,

where N + 1 := 1.
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distinct agents i1 and i2 such that i1 > i2, preference is given to the higher indexed agent

unless either (a) ji1,i2 was rejected in favor of i2 in some earlier round, or (b) ji1,i2 and i2 have

strictly higher priority for the temporary assignment of ji1,i2 than i1 (w.r.t. the original priority

structure �). To illustrate the procedure, we now determine the chosen allocation for a simple

example.

Example 6 (Example 4 continued). Suppose agents’ preferences are as follows

R1 R2 R3 R4 R5 R6 R7 R8

o1 o1 p1 p1 p2 p3 p3 o2

p3 p2 o2

For this example, we have I0 = {1, . . . , 6} and I1 = {7, 8}. In Round 0 of the ADA-ETB,

a temporary matching for agents 1 through 6 is determined using the ADA for strict priority

structures. The ADA ends after the first step and produces the matching

µ0 =

(
1 2 3 4 5 6

o1 2 p1 4 p2 p3

)
.

In Round 1 of the ADA-ETB, agents 7 and 8 apply to their first choice objects p3 and o2,

respectively. Since 7 �′p3 6, object p3 rejects 6 in favor of 7. In Round 2, 6 then applies to

object p2. Since 6 �p2 5, this leads to the rejection of 5, who then applies to p3 in Round 3. As

5 �p3 7, 7 is rejected by p3 and applies to o2 in Round 4 of the algorithm. Since 7 ∼′o2 8, we

obtain the following temporary assignment

µ4 =

(
1 2 3 4 5 6 7 8

o1 2 p1 4 p3 p2 o2 o2

)
.

Since no agent is rejected in Round 4 and µ4 is not a matching, the algorithm proceeds to

the tie-breaking routine. Since κ > 1, the algorithm moves to subroutine (TB.1). Now note

that j7,8 = 6 and recall that 6 was rejected by p3 in favor of 7 in Round 1 of the ADA-ETB.

Hence, 8 is rejected by o2 and, given that this is her only acceptable object, subsequently remains

unmatched. We thus obtain the following outcome of the ADA-ETB procedure

AT�(R) =

(
1 2 3 4 5 6 7 8

o1 2 p1 4 p3 p2 o2 8

)
.

We now discuss the allocative and incentive properties of the proposed procedure.

Theorem 3. Let � be a solvable IB environment.

Then AT� is constrained efficient.

Given that Erdil and Ergin’s (2008) stable improvement cycles procedure finds a constrained

efficient matching for all priority-based allocation problems and that unsolvable environments

exist, there are situations in which their mechanism succeeds in finding a constrained efficient
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matching, while the ADA-ETB mechanism is not applicable. As our next result shows, the

major advantage of our new mechanism is that for all solvable IB environments it is not only

guaranteed to find a constrained efficient matching, but it also provides agents with dominant

strategy incentives to submit preferences truthfully. This is surprising given that we sometimes

rely on agents’ preferences to break ties.

Theorem 4. Let � be a solvable IB environment.

Then AT� is group strategy-proof.

Theorems 3 and 4 complete the proof of the sufficiency part of Theorem 2. Before proceed-

ing, we briefly comment on the proof of Theorem 4. Proofs of the (group) strategy-proofness

of the ADA procedure for strict environments usually rely on properties of the set of stable

matchings.20 Since those properties do not generally hold for matching models with indiffer-

ences, we cannot extrapolate from previous proof techniques here. Next, note that Theorem 4

yields the following interesting corollary.

Corollary 4. An IB environment � is solvable if and only if there exists a group strategy-proof

and constrained efficient matching mechanism.

Thus, imposing the logically stronger incentive compatibility requirement of group strategy-

proofness does not necessitate additional restrictions of the priority structures, at least when

attention is restricted to IB environments.21 We conclude this section by discussing the design

of the algorithm and some important special cases.

First, we discuss the importance of taking the history of rejections into account when break-

ing ties between equal priority agents (with respect to �′). As we show in Appendix A.2,

whenever the tie-breaking routine is invoked in a round t where {i1, i2} = µt(o) for two distinct

agents i1, i2 with i1 > i2 and p := µt(ji1,i2) is such that i2 �p ji1,i2 �p i1, any constrained

efficient and strategy-proof mechanism must award object o to i2. Now consider the situation

in which, all else being equal, i2 strictly prefers p over o. In this case she would cause the re-

jection of ji1,i2 by p who would then continue to propose down her preference list in subsequent

rounds. This could initiate a rejection chain which ultimately leads to the rejection of i2 by

p. Strategy-proofness requires that in this case i2 must still receive a place at o, as otherwise

she would be strictly better off concealing her preference for p. In particular, whenever i2 has

caused a rejection of ji1,i2 and subsequently competes with i1 for an object o such that i1 ∼o i2,
we have to ensure that i2 obtains object o.

Next, we discuss the relationship of the ADA-ETB with existing mechanisms. If � is strict,

then the tie-breaking stage is never invoked and AT� = ADA�. For HET environments,

we have AT� = TTC�: the first time the tie-breaking routine is invoked, all agents who do

20For example, the most general result on the strategy-proofness of the ADA for agents on the proposing side
is the one by Hatfield and Milgrom (2005). Their proof relies heavily on the so called rural hospitals theorem
(cf. Roth, 1986).

21For general social choice problems, Barberà et al. (2010) recently characterized preference domains for
which individual implies group strategy-proofness. Since their domain restriction is never satisfied for matching
problems with more than one object, the above corollary is not implied by their result.
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not belong to one of the top-trading cycles are rejected by their first choices. It is relatively

straightforward to establish that an agent belonging to a top-trading cycle is not subsequently

rejected in the course of the ADA-ETB (this is formally established in the proof of Theorem 3

in the appendix). Iterative application of these arguments establishes the equivalence of AT�

and TTC� if � is a HET environment. The main difference to previous presentations of the

TTC procedure is that above we basically reinterpret the TTC as a tie-breaking subroutine.

5 Discussion and Conclusion

In this paper we introduced a simple set of necessary conditions for the existence of strategy-

proof and constrained efficient mechanisms in priority-based allocation problems with weak

priorities. Furthermore, we showed that these conditions are also sufficient in a large class of

environments that includes all previously known solvable environments. An interesting direction

for future research is to extend our results to a full characterization of all solvable environments

and the case where multiple copies of some or all objects are available. Given the strong

restrictions we have shown to be necessary for the solvability of IB environments, our conditions

have immediate implications for more general environments when there is only one copy of each

object. If multiple copies of some or all of the objects are available, the conditions for solvability

clearly become more permissive. At the extreme end, where each object can accommodate

all agents, no restrictions on the shape of the priority structure are necessary in order to

guarantee solvability. However, exactly how much leverage is gained by increasing capacities is

an interesting question that we leave for future research.22 In the remainder of this section, we

discuss some other important issues.

5.1 Relaxing connectedness

We have claimed above that the assumption of connectedness is without loss of generality for

our analysis. If this assumption is violated, we will now show how the set of all agents can be

partitioned into a sequence of subsets to which our results apply.

To identify the first set in this sequence, we search for a minimally connected subset of I

(with respect to �), i.e. a minimal set J ⊆ I such that J �o I \ J for all objects o. If there

is a unique minimally connected subset J of I, set J1 := J . Otherwise, we must have i ∼o j
for all i, j ∈ I and we let J1 be a singleton set consisting of only the highest indexed agent

in I.23 Proceeding iteratively, suppose we have defined minimally connected subsets J1, . . . , Jt

and It+1 := I \ (J1, . . . , Jt) 6= ∅. If there is a unique minimally connected subset J ⊆ It+1 with

respect to � |It+1 , we set Jt+1 := J . Otherwise, let Jt+1 be the singleton set consisting of the

22One problem in obtaining a characterization for such cases is that now some objects can be assigned to
several agents. This makes the construction of counterexamples needed to demonstrate necessity much more
difficult, as now one has to keep track of which subset of agents out of an equal priority group gets an object.

23To see this, note that if there are two sets J, J ′ such that J �o J
′ and J ′ �o J for all objects o then J ∼o J

′

for all objects o. Furthermore, J 6= J ′ implies |J ∪ J ′| ≥ 2. Hence, if there are two agents i, j ∈ I such that
i �p j for some object p, J ∼p J

′ �p i �p j and � cannot be an IB environment.
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highest indexed agent in It+1. In the following, we will refer to the just defined partition (Jt)t

as the minimal top-set partition of I with respect to �. We obtain the following immediate

corollary of Theorem 2.

Corollary 5. An IB environment � is solvable if and only if, for all t,

(i) � |Jt is acyclic,

(ii) � |Jt has no strong priority reversals, and

(iii) � |Jt contains no inconsistent weak priority reversals.

To describe a group strategy-proof and constrained efficient mechanism, we slightly extend

the domain of the ADA-ETB mechanism as follows: Given a preference profile R of agents in

I, a subset of agents J ⊆ I, and a subset of objects Q ⊆ O, let AT�(R, J,Q) be the outcome

chosen by the ADA-ETB procedure when the set of agents is J , the set of available objects is

Q, and preferences of agents in J are given by RJ . Now suppose that (i)-(iii) are satisfied for

all t. Given some preference profile R, consider the following iterative procedure for allocating

the available goods among the agents: in the first step, calculate AT�(R, J1, O), let O1 be the

set of objects assigned to some agent in J1 under this matching, and Q1 := O \ O1 be the

set of remaining objects. Now fix some t ≥ 2 and suppose that O1, Q1, . . . , Ot−1, Qt−1 have

already been defined. In the tth step, calculate AT�(R, Jt, Qt−1), let Ot be the of objects

assigned to some agent in Jt under this matching, and Qt := Qt−1 \Ot be the set of remaining

objects. Let AT
�

(R) be the final matching of objects to agents induced by this iterative

procedure. By Theorem 3 and the assumed validity of (i)-(iii) for all t, AT�(R, Jt, Qt−1) is a

constrained efficient matching of objects in Qt−1 to agents in Jt. By construction of the iterative

procedure and the definition of the minimal top-set partition, this guarantees that AT
�

(R) is

a constrained efficient matching of objects in O to agents in I: for all s, t such that s < t, an

agent in Js can never envy an agent in Jt for her assignment since (a) all agents in Js have

weakly higher priority for all objects than all agents in Jt and (b) receive preferred treatment

in the sequential mechanism described above. Hence, a stable improvement cycle would have

to consist exclusively of agents in Jt and objects in Ot for some t, which is not possible given

the properties of the ADA-ETB. Finally, AT
�

(·) is group strategy-proof if conditions (i)-(iii)

are satisfied for all t. This follows from Theorem 4, since the reports of agents in Jt do not have

any influence on the set of objects Qt−1 available to them. Hence, just as we claimed above,

the assumption of connectedness is without loss of generality.

For the house allocation problem, the above iterative procedure boils down to a serial

dictatorship (with the right to choose determined by the indexing of agents). Note also that

depending on the priority structure, it could be the case that there is a group strategy-proof

and constrained efficient mechanism for only a strict subset of the agents. For example, it could

be that the minimal top-set partition of I is, say, (J1, J2), that � |J1 is solvable, but � |J2 is

not.
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5.2 Exogenous versus endogenous tie-breaking

The ADA-ETB relies on agents’ preferences to break (some of the) ties in the priority structure.

In contrast, Abdulkadiroglu et al. (2009) focus on exogenous, or fixed, tie-breaking, where

ties are broken without reference to student preferences. They show that for an arbitrary

weak priority structure no strategy-proof mechanism can Pareto dominate the SDA mechanism

resulting resulting from single tie-breaking, which refers to an exogenous tie-breaking procedure

in which ties are resolved in the same way across all objects. Given the importance of exogenous

tie-breaking for the existing literature, it is instructive to characterize environments for which

there exists some exogenous tie-breaking procedure guaranteeing constrained efficiency. We

first formally define the notion of solvability by exogenous tie-breaking.

Definition 6. An environment � is solvable by exogenous tie-breaking, if there exists a strict

priority structure �S such that i �So j whenever i �o j and such that for all preference profiles

R, ADA�
S
(R) ∈ CE�(R).

Note that it is without loss of generality to restrict attention to the ADA algorithm here,

since it is the unique constrained efficient mechanism for strict environments. We now charac-

terize the class of IB environments that are solvable by exogenous tie-breaking. For this, we

need the following definition.

Definition 7. A tie i1 ∼o i2 is weakly cyclic, if there exist two agents j1, j2 ∈ I \ {i1, i2} and

objects such that either

(a) i1 �p1 j1 �o i1 and i2 �p2 j2 �o i2, or

(b) {i1, i2} �p1 j1 �p2 j2 �o i1.

A weak priority structure is strongly acyclic if it contains no weakly cyclic ties.

From the definition, it is immediate that any strongly cyclic tie is weakly cyclic. The

converse is not true. However, the only type of weakly cyclic tie i1 ∼o i2 which is not strongly

cyclic, is the one where case (a) above applies only with j1 = j2 and p1 6= p2. We are now ready

to present our characterization result.

Theorem 5. A connected IB environment � with |I| ≥ 4 is solvable by exogenous tie-breaking

if and only if it is strongly acyclic and has no weak priority reversals.

Furthermore, if � is solvable by exogenous tie-breaking, it is solvable by single tie-breaking.

Comparing Theorems 5 and 2, we see that the differences between the class of solvable IB

environments and the class of IB environments solvable by exogenous tie-breaking is small.

While this can be seen as further support for the view that not much is lost by focusing on

exogenous tie-breaking, one should take note that HET environments satisfy weak, but not

strong acyclicity. Hence, if we were to limit attention to exogenous tie-breaking, we would lose

this practically important class of environments. The above characterization of IB environments

solvable by exogenous tie-breaking does not extend to environments with |I| = 3, where, as we

detail in Appendix B.3, slightly stronger conditions are needed.
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5.3 Relation to other characterizations

In an influential paper, Ergin (2002) characterized strict environments for which constrained

efficiency is equivalent to full efficiency.24 If there is only one copy of each object, as we

assume throughout, his condition is that there should not be three distinct agents i1, i2, i3 and

two objects o, p such that i1 �o i2 �o i3 and i3 �p i1. If a priority structure satisfies this

requirement, it is called Ergin-acyclic. Ergin (2002) showed that for strict environments �
the following statements are equivalent: (i) � is Ergin-acyclic, (ii) ADA� is efficient, and (iii)

ADA� is strongly group strategy-proof.

While Ergin’s characterization applies only to strict environments, it is easy to extend it to

our class of connected IB environments. The reason is that a connected IB environment � is

Ergin-acyclic if and only if it is a HET environment: suppose � is a connected IB environment

such that for some object o, i1 �o i2 �o i3. By Ergin-acyclicity, no agent j such that i3 �o j can

ever have strictly higher priority for one of the objects than i1. But then � can be connected

only if there exists an agent j such that i3 �o j and j �p i2 for some p. Since � is an IB

environment, we must have i1 �p j �p i2. By Ergin-acyclicity, i2 can never have strictly higher

priority for one of the objects than i1 and we obtain a contradiction to connectedness.

This implies in particular, that Ergin-acyclicity is more demanding than the conditions

for the solvability of IB environments. Furthermore, there is no logical relationship between

Ergin’s condition and the possibility of solving a weak priority structure by exogenous tie-

breaking. Finally, note that the above observation yields the following extension of Ergin’s

characterization for strict environments.

Theorem 6. Let � be a connected IB environment. Then the following are equivalent:

(i) � is Ergin-acyclic

(ii) AT� is efficient

(iii) AT� is strongly group strategy-proof.

To see that this result holds note that, as explained above, the Ergin-acyclicity of � implies

that � is a HET environment, so that AT�(·) reduces to the TTC mechanism. For the other

direction, note that whenever � has an Ergin-cycle, the counterexamples from Ergin (2002)

apply, irrespective of whether � is strict or not.

5.4 Insufficiency of existing mechanisms

Given the nature of this investigation it is important to know whether some of the existing

mechanisms would work in any solvable environments. We now provide an example showing

that all pre-existing mechanisms may fail to be either strategy-proof or constrained efficient

even though an environment is solvable.

24Kesten (2006) characterizes strict environments for which TTC and ADA coincide by means of a simi-
lar acyclicity condition (which is equivalent to Ergin’s condition for the case of unit capacities). Ehlers and
Erdil (2010) characterize general priority environments such that all constrained efficient matchings are always
efficient. Their condition is stronger than Ergin’s.
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Example 7. There are three agents i1, i2, i3 and seven objects o, p1, . . . , p6. The priority struc-

ture is given by

� �o �p1 �p2 �p3 �p4 �p5 �p6
i1, i2, i3 i1 i1 i2 i2 i3 i3

i2 i3 i1 i3 i1 i2

i3 i2 i3 i1 i2 i1

.

Note that since there are only three agents and no ties below the top of the priority structure,

Theorem 2 implies that the above environment is solvable. Since there are several weak priority

reversals, the environment is not solvable by exogenous tie-breaking by Theorem 5. Furthermore,

Ergin-acyclicity is not satisfied so that in particular no efficient mechanism is stable. Finally,

we argue that the stable improvement cycles procedure by Erdil and Ergin (2008) cannot be used.

In order to implement this procedure, we would need to first resolve indifferences at object o,

then run the ADA-algorithm using this modified fixed priority structure, and finally eliminate

all stable improvement cycles.

Given the symmetries of the example it is easy to see that we can assume without loss

of generality that i1 �′o i2 �′o i3. Consider first the preference profile given by Ri1 = p5, o,

Ri2 = o, and Ri3 = o. The ADA with the just mentioned strict priority structure would leave i3

unmatched, assign p5 to i1 and o to i2. Since there is no stable improvement cycle, this is also

the final outcome of the stable improvement cycles procedure. Suppose now that i3 changed her

preferences to R′i3 = o, p5, while all other agents leave their preferences unchanged. Now the

ADA procedure would leave i2 unmatched, assign o to i1 and p5 to i3. In particular, there is a

(unique) stable improvement cycle since i1 and i3 mutually prefer each other’s assignment and

i2 cannot veto this exchange. Hence, the stable improvement cycles procedure would assign o to

i3 at the profile (Ri1 , Ri2 , R
′
i3

) and i3 has an incentive to manipulate this procedure at R.
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[30] Sönmez, T., Ünver, U., 2010. “House allocation with existing tenants: A characterization,” Games

and Econ. Behavior 69, 425 – 445.

[31] Svensson, L.-G., 1999. “Strategy-proof allocation of indivisble goods,” Soc. Choice Welfare 16,

557 – 567.

29



APPENDIX.

A Proof of Theorem 1

A.1 Necessity of Acyclicity

We first introduce a logically weaker notion of strongly cyclic ties for general environments.

Definition 8. (i) An (i, o)-cycle is a sequence of L distinct agents i1, . . . , iL = i0 = i and a se-

quence of L distinct objects o1, . . . , oL = o such that for all l ∈ {1, . . . , L}, il−1 �ol il.

(ii) A tie i ∼o j between two distinct agents i, j ∈ I is strongly cyclic, if there is an (i, o)-cycle

(il, ol)Ll=1 and a (j, o)-cycle (jm, pm)Mm=1 such that either

(a’) il 6= jm for all l,m and ol 6= pm for all l ∈ {1, . . . , L− 1},m ∈ {1, . . . ,M − 1}, or

(b’) there are l,m such that {i1, o1, . . . , il−1, ol−1}∩{j1, p1, . . . , jm−1, pm−1} = ∅ and (il
′
, ol
′
) =

(jm
′
, pm

′
) for all l′ ≥ l and m′ ≥ m.

A tie i ∼o j is thus strongly cyclic, if there is an (i, o)-cycle and a (j, o)-cycle such that the two

cycles are either completely disjoint (case (a’)) or “meet” exactly once and then coincide (case (b’)).

Proposition 1. If � contains a strongly cyclic tie in the sense of Definition 8, then � is not solvable.

Proof. Suppose � contains a strongly cyclic tie i ∼o j with (i, o)-cycle (il, ol)Ll and (j, o)-cycle

(jm, pm)Mm that satisfy either condition (a’) or (b’) of Definition 8. Now consider a preference profile

R such that all agents in I \ {i1, . . . , iL, j1, . . . , jM} rank objects in {o, o1, . . . , oL−1, p1, . . . , pM−1} as

unacceptable,

Ri = o,

Rj = o,

Ril = ol, ol+1 for all l ∈ {1, . . . , L− 1}, and

Rjm = pm, pm+1 for all m ∈ {1, . . . ,M − 1}.
This preference profile is well defined since either condition (a’) or (b’) of Definition 28 is satisfied.

It is easy to see that there are precisely two constrained efficient matchings for this problem (we only

specify the relevant part of the matchings):

µ =

(
i j il(l < L) jm(m < M)

o j ol pm

)
and ν =

(
i j il(l < L) jm(m < M)

i o ol pm

)
.

That these two assignments are matchings follows since the cycles satisfy (a’) or (b’) of Definition

8. Now assume that, contrary to what we want to show, there exists a strategy-proof and constrained

efficient matching mechanism f . Assume first that f(R) = ν. Suppose i claims that her preferences

are actually R′i = o, o1 and consider the preference profile R′ = (R′i, R−i). By strategy-proofness,

we must have fi(R
′) 6= o. But then stability can only be satisfied when fil(R

′) = ol+1 for all l ≤ L

(with oL+1 := o1), and i1, . . . , iL form a stable improvement cycle of f(R′) at R′, a contradiction. If

f(R) = µ, we can similarly derive a contradiction by letting j deviate to R′j = o, p1. This completes

the proof.
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While it is immediate that a strongly cyclic tie in the sense of Definition 2 (a) or (b) is also strongly

cyclic in the sense of Definition 8, the converse does not necessarily hold. However, the next result

shows that for IB environments acyclicity in the sense of Definition 2 and the absence of strong priority

reversals jointly imply that there are no strongly cyclic ties in the sense of Definition 8.

Lemma 4. Let � be an arbitrary IB-environment and suppose i ∼o j is a strongly cyclic tie in the

sense of Definition 8. Then � either contains a strongly cyclic tie in the sense of Definition 2 or �
has a strong priority reversal.

Proof. Suppose � contains a strongly cyclic tie i ∼o j with cycles (il, ol)Ll=1 and (jm, pm)Mm=1 that are

either completely disjoint (case (a’)) or meet exactly once and then coincide (case (b’)). We assume

that the cycles are minimal in the sense that no strict subset of {i1, o1, . . . , iL, oL, j1, p1, . . . , jM , pM}
contains a strongly cyclic tie (that is, contains a strongly cyclic tie and the corresponding cycles).

Suppose first that case (a’) is satisfied. If max{L,M} ≥ 3, we obtain an immediate contradiction

to the assumed minimality: If L ≥ 3, we must have i �o i1, since if i1 �o i, (i1, o1, i, o) is an (i, o)-cycle

of length 2, contradicting the assumed minimality. Since � is an IB environment and i ∼o j, this

implies i ∼o i1. But then i1 ∼o j is strongly cyclic with cycles (il, ol)Ll=2 and (jm, pm)Mm=1, so that we

still obtain a contradiction to the assumed minimality. Hence, we must have L = M = 2 and i ∼o j
is strongly cyclic in the sense of Definition 2.

Next, suppose that case (b’) is satisfied and let l,m be the point where the two cycles meet. A

straightforward variation of the above arguments shows that minimality requires l = m = 1 and hence,

L = M . We now show that L ≥ 3 implies that � contains a strong priority reversal. Since � is an

IB environment and i ∼o j, the assumed minimality of the cycle implies i ∼o j ∼o i1 ∼o i2. We can

assume w.l.o.g. that i �o1 j �o1 i1. Minimality of the cycles implies that i2 �o1 i1 since otherwise we

would have {i, j} �o1 i1 �o1 i2 so that there is a joint cycle (il, ol)Ll=2 of length L − 1. Since i ∼o i1,
a similar argument shows that minimality implies i2 �o2 i. If i2 ∼o2 i, we obtain a contradiction to

minimality since {i, i2} �o1 i1 �o2 i. Hence, we must have i1 �o2 i2 �o2 i. Since i �o1 j �o1 i1 and

i1 ∼o i2 ∼o i ∼o j, we obtain a strong priority reversal as claimed.

A.2 Tie-breaking lemma

Lemma 5. Let i1, i2, i3 be three distinct agents and suppose there are two distinct objects o and p such

that i1 ∼o i3 ∼o i2 and i1 �p i3 �p i2. Consider a preference profile R such that Ri1 = o, Ri2 = o,

Ri3 = p, and jPj{o, p} for all j ∈ I\{i1, i2, i3} such that j �o i1 or j �p i2.

If f is a constrained efficient and strategy-proof mechanism, then fi1(R) = o.

Proof. Suppose to the contrary that under the conditions of the lemma, we have fi1(R) 6= o. Then by

constrained efficiency, fi2(R) = o. Throughout the proof we only consider preferences and matchings

for agents i1, i2, i3 with the understanding that the preferences of other agents are fixed at some

R−{i1,i2,i3} which satisfies the conditions of Lemma 5. To derive a contradiction, we consider seven

preference profiles that are summarized in the following diagram. Arrows indicate how we move

between the profiles.
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R1 R1
i1

Ri2 Ri3

o o p

p

→
R2 R1

i1
Ri2 R1

i3

o o p

p o

→

R3 R1
i1

Ri2 R2
i3

o o o

p p

↓
R5,1 Ri1 R1

i2
R2

i3

o p o

o p

↓

←

R4 R1
i1

R1
i2

R2
i3

o p o

p o p

↓
R6 Ri1 R1

i2
R3

i3

o p o

o

←
R5,2 R1

i1
R1

i2
R3

i3

o p o

p o

Consider first the profile R1. By strategy-proofness, we must have fi1(R1) 6= o since R1 is obtained

from R by adding p to i1’s list of acceptable objects. Since i1 �p i3, stability requires that fi1(R1) =

p and consequently fi3(R1) = i3. Next, consider the profile R2. Strategy-proofness requires that

fi3(R2) 6= p since R2 is obtained from R1 by adding o to i3’s list. By non-wastefulness, we must have

fi1(R2) = p. But then we cannot have fi3(R2) = o since otherwise i1 and i3 would form a stable

improvement cycle of f(R2) at R2. Hence, fi2(R2) = o. Since R3 is obtained from R2 by letting i3

reshuffle her list of acceptable objects, strategy-proofness requires that fi3(R3) = i3. But then non-

wastefulness requires that f(R3) = f(R2). Now suppose i2 changes her ranking to R1
i2

= p, o leading

to the preference profile R4. By stability, fi2(R4) 6= p since either i1 or i3 will have to be rejected by

o and both have strictly higher priority for p than i2. Strategy-proofness requires that fi2(R4) = o,

and stability implies fi1(R4) = p and fi3(R4) = i3.

Now suppose first that i1 declares p unacceptable, leading to the profile R5,1. By strategy-

proofness, we must have fi1(R5,1) = i1. By constrained efficiency we must have fi2(R5,1) = p and

fi3(R5,1) = o. Starting from R5,1 suppose i3 declared p unacceptable, leading to the profile R6. By

strategy-proofness, we must have fi3(R6) = o

Next, suppose that starting from R4, i3 declares p unacceptable, leading to the profile R5,2. By

strategy-proofness, fi3(R5,2) = i3. By constrained efficiency, fi1(R5,2) = o and fi2(R5,2) = p. Starting

from R5,2 suppose i1 declared p unacceptable, leading to R6. By strategy-proofness, we must have

fi1(R6) = o. This is a contradiction since we have shown above that i3 must also obtain o at R6.

A.3 Necessity of no strong priority reversals

Suppose to the contrary that � contains a strong priority reversal (i1, i2, j1, j2, o, p1, p2) (i.e. i1 �p1
j1 �p1 i2, i2 �p2 j2 �p2 i1, i1 ∼o i2 ∼o j1 ∼o j2, and j1 6= j2) but there is a constrained efficient and

strategy-proof mechanism f . Consider a preference profile R such that all agents in I \ {i1, i2, j1, j2}
rank objects in {o, p1, p2} as unacceptable,

Ri1 = o,

Ri2 = o,

Rj1 = p1, and

Rj2 = p2.

The tie-breaking lemma implies fi1(R) = o since i1 �p1 j1 �p1 i2. However, since i2 �p2 j2 �p2
i1, the same lemma also implies fi2(R) = o. Since o can only be assigned to one agent, this is a
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contradiction and completes the proof.

A.4 Necessity of no inconsistent weak priority reversals

Suppose � contains an inconsistent weak priority reversal (i1, i2, j1, o, p1, p2) (i.e. i1 ∼o i2 ∼o j1,
i1 �p1 j1 �p1 i2 and i2 �p2 j1 �p2 i1). Let j2 ∈ I \ {i1, i2, j1} be an agent such that {i1, i2, j1} ∼o j2,
{i1, i2, j1} �p1 j, {i1, i2, j1} �p2 j2, and {i1, i2} �p3 j2 �p3 j1 for some object p3 ∈ O \ {o, p1, p2}.
Suppose that contrary to what we want to show there exists a constrained efficient and strategy-proof

mechanism f . Throughout the proof we assume that all agents in I \ {i1, i2, j1, j2} rank all objects in

{o, p1, p2, p3} as unacceptable and will not specify those agents’ preferences.

Claim 1:

(a) LetR1
i1

= o, p1, R
1
i2

= o, p3, R
1
j1

= p3, p1, R
1
j2

= p3, and consider the profileR = (R1
i1
, R1

i2
, R1

j1
, R1

j2
).

If f is strategy-proof and constrained efficient, we must have fi1(R) = o.

(b) Let R2
i1

= o, R2
i2

= o, R2
j1

= p3, R
1
j2

= p3, and consider the profile R′ = (R2
i1
, R2

i2
, R2

j1
, R1

j2
). If f

is strategy-proof and constrained efficient, then fi1(R) = o implies fi1(R′) = o.

Proof. (a) Suppose to the contrary that fi2(R) = o. Constrained efficiency then implies fi1(R) = p1,

fj1(R) = j1, and fj2(R) = p3. Now suppose that j1 unilaterally changes her ranking to R3
j1

= p1

and consider the resulting preference profile R̃ = (R1
i1
, R1

i2
, R3

j1
, R1

j2
). By strategy-proofness, we

must have fj1(R̃) = j1. But this is compatible with constrained efficiency only when fi2(R̃) = o

and thus f(R̃) = f(R). Next, suppose that i1 unilaterally deviates to R2
i1

= o and consider

the resulting preference profile R̃′ = (R2
i1
, R1

i2
, R3

j1
, R1

j2
). By strategy-proofness we must have

fi1(R̃′) = i1. Non-wastefulness implies fi2(R̃′) = o, fj1(R̃′) = p1, and fj2(R̃′) = p3. Finally,

assume that i2 unilaterally deviates to R2
i2

= o and consider the resulting preference profile

R̃′′ = (R2
i1
, R2

i2
, R3

j1
, R1

j2
). By strategy-proofness, we must have fi2(R̃′′) = o and constrained

efficiency implies f(R̃′′) = f(R̃′). But this is a violation of the tie-breaking lemma, since

i1 �p1 j1 �p1 i2, R2
i1

= o, R2
i2

= o, R3
j1

= p1, and all agents in I \ {i1, i2, j1} rank objects o and

p1 as unacceptable.

(b) The following diagram summarizes the preference profiles used in the proof and also indicates

how we move between those profiles.

R R1
i1

R1
i2

R1
j1

R1
j2

o o p3 p3

p1 p3 p1

↓

R′ R2
i1

R2
i2

R2
j1

R1
j2

o o p3 p3

↑
R1 R1

i1
R1

i2
R1

j1
R2

j2

o o p3 p1

p1 p3 p1 p3

↓

R6 R3
i1

R2
i2

R2
j1

R1
j2

o o p3 p3

p3

↑
R2 R1

i1
R1

i2
R2

j1
R2

j2

o o p3 p1

p1 p3 p3

↓

R5 R3
i1

R3
i2

R2
j1

R1
j2

o o p3 p3

p3 p1

↑
R3 R1

i1
R3

i2
R2

j1
R2

j2

o o p3 p1

p1 p1 p3

→
R4 R3

i1
R3

i2
R2

j1
R2

j2

o o p3 p1

p3 p1 p3
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By part (a) of Claim 1, we have fi1(R) = o, fi2(R) = p3, fj1(R) = p1, and fj2(R) = j2.

Consider a unilateral deviation of j2 to R2
j2

= p1, p3 and the resulting preference profile R1. By

strategy-proofness, we must have fj2(R1) 6= p3. This is compatible with constrained efficiency

only if fi2(R1) = p3 and f(R1) = f(R). Next, suppose j1 unilaterally deviates to R2
j1

= p3 and

consider the resulting preference profile R2.

We claim that we must have fi1(R2) = o: otherwise fi2(R2) = o. By strategy-proofness,

i2 would still have to obtain o if she unilaterally deviated to R2
i2

= o, leading to the profile

R̂ = (R1
i1
, R2

i2
, R2

j1
, R2

j2
). But then constrained efficiency implies fi1(R̂) = p1, fj1(R̂) = j1, and

fj2(R̂) = p3. Now consider a unilateral deviation of j1 to R1
j1

and the resulting preference profile

R̂′ = (R1
i1
, R2

i2
, R1

j1
, R2

j2
). By strategy-proofness, we must have fj1(R̂′) 6= p3. This is compatible

with constrained efficiency only when fi2(R̂′) = o. But then f cannot be strategy-proof since i2

can obtain R̂′ from R1 by a unilateral deviation from R1
i2

to R2
i2

and fi2(R1) 6= o, as we have

already established. Hence, it has to be the case that fi1(R2) = o and constrained efficiency

implies fi2(R2) = p3, fj1(R2) = j1, and fj2(R2) = p1.

By strategy-proofness, i2 cannot obtain o by unilaterally deviating to R3
i2

= o, p1. Constrained

efficiency implies fi1(R3) = o, fi2(R3) = p1, fj1(R3) = j1, and fj2(R3) = p3. Next, consider

a unilateral deviation of i1 to R3
i1

= o, p3, leading to the preference profile R4. By strategy-

proofness, fi1(R4) = o and constrained efficiency implies f(R4) = f(R3). Strategy-proofness

implies that j2 must still get p3 when she deviates to R1
j2

= p3. Since i1 �p3 j2, this is compatible

with constrained efficiency only when fi1(R5) = o and f(R5) = f(R4). Now consider a unilateral

deviation of i2 to R2
i2

= o, leading to the profile R6. By strategy-proofness, we must have

fi2(R6) = i2 and constrained efficiency implies fi1(R6) = o. Since R′ can be obtained from R6

via a unilateral deviation of i1 to R3
i1

= o, we must have fi1(R′) = o as claimed.

Observe that for the proof of part (a) of the claim, we only need to assume that the priority

structure is such that i1 �p1 j1 �p1 i2 and j2 �p3 j1. Now let R3
i1

= o, p3, R
4
i2

= o, p2, R
3
j1

= p3, p2,

R1
j2

= p3, and consider the preference profile R′′ = (R3
i1
, R4

i2
, R3

j1
, R1

j2
). Since i2 �p2 j1 �p2 i1, we

can simply exchange the roles of agents i1 and i2 and of objects p1 and p2 in the proof of part

(a) to conclude that a strategy-proof and constrained efficient matching mechanism f has to satisfy

fi2(R′′) = o. Similarly, for the proof of part (b), we only need to assume that the priority structure

is such that i1 �p1 j1 �p1 i2 and {i1, i2} �p3 j2 �p3 j1. Since i2 �p2 j1 �p2 i1, we can again simply

exchange the roles of i1 and i2, and of p1 and p2 in the proof to conclude that if f is strategy-proof and

constrained efficient, then fi2(R′′) = o implies fi2(R′) = o. Thus, we obtain that fi1(R′) = fi2(R′) = o,

which is a contradiction since there is only one copy of object o. This completes the proof.

B Proofs for Section 4

For the proofs in this section, we fix a solvable IB environment � throughout. Theorem 1 implies

that � must be acyclic, has no strong priority reversals, and contains no inconsistent weak priority

reversals.
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Proof of Lemma 1

If KT = 0, then KF = 1 and L1 ∪ . . . ∪ L(KF−1) = ∅ since I is connected, i.e. there is nothing to

show. For the following, let KT > 0.

We show first that all agents with a priority level smaller than or equal to the threshold must be

strictly ranked. Let i1 ∈ L1 ∪ . . . ∪ LKT
and o1 ∈ O be such that i1 ∈ r[KT+3](�o1).

We show first that �o1 |(L1∪...∪LKT
) must be strict. Suppose to the contrary that there are two

distinct j1, j2 ⊆ L1∪ . . .∪LKT
such that j1 ∼o1 j2. By the definition of KT , no agent in L1∪ . . .∪LKT

can have strictly lower priority for o1 than agent i1. Since � is an IB environment, we must have

{j1, j2} ⊆ r[KT+3](�o1). Let p1, p2 be such that r[KT−l1](�p1) = j1 and r[KT−l2](�p2) = j2 for some

l1, l2 ≥ 0 (note that such objects must exist by the definition of L1 ∪ . . . ∪ LKT
). Since {j1, j2} ⊆

r[KT+3](�o1), there are KT + 2 agents distinct from i1, j1, j2, who have strictly higher priority for o1

than j1 and j2. Since at p1 and p2 there are at most KT − 1 agents with strictly higher priority than

j1 and j2, respectively, there must be two distinct agents j3, j4 such that j1 �p1 j3, j2 �p2 j4, and

{j3, j4} �o1 j1 ∼o1 j2, contradicting the acyclicity of �. Thus, �o1 |(L1∪...∪LKT
) is strict.

Since i1 ∈ L1 ∪ . . . ∪ LKT
, there must exist some o2 ∈ O such that r[KT−l](�o2) = i1 for some

l ≥ 0. We claim that �o2 |(L1∪...∪LKT
) must be strict. Suppose to the contrary that j1 ∼o2 j2 for two

distinct j1, j2 ∈ L1 ∪ . . . ∪ LKT
. Since � is an IB environment, we must have i1 �o2 j1 ∼o2 j2 in this

case. Since �o1 |(L1∪...∪LKT
) is strict and, by the definition of KT , no agent in L1 ∪ . . .∪LKT

can have

strictly lower priority than i1 for object o1, we must have {j1, j2} �o1 i1. But then the tie j1 ∼o2 j2 is

strongly cyclic, a contradiction. Thus, �o2 |(L1∪...∪LKT
) is strict.

Next, suppose there exists some o3 ∈ O \ {o1, o2} such that j1 ∼o3 j2 for two distinct j1, j2 ∈
L1 ∪ . . . ∪ LKT

. Since � is an IB environment and �o1 |(L1∪...∪LKT
) is strict, this tie is strongly cyclic

unless i1 ∼o3 j1 ∼o3 j2 as well. Let i2 be the agent with the lowest priority for object o2 among

agents in L1 ∪ . . . ∪ LKT
. Then if i2 �o3 j1, the tie j1 ∼o3 j2 is strongly cyclic since {j1, j2} �o2 i2.

Hence, i1 ∼o3 i2 ∼o3 j1 ∼o3 j2. Since i1 ∈ r[KT+3](�o1) and i1 = r[KT−l](�o2) for some l ≥ 0, there

must be two distinct agents i3, i4 ∈ I \ {i1, i2} such that {i3, i4} �o1 i1 �o2 {i3, i4}. Suppose first that

i3 �o3 i1 ∼o3 i2. Since i2 ∈ L1∪. . .∪LKT
, there must exist an object o4 such that i2 = r[KT−l′](�o4) for

some l′ ≥ 0. As i1 ∈ r[KT+3](�o1), there are KT + 2 agents with strictly higher priority for o1 than i1.

Of these agents, at least two must have strictly lower priority for o4 than agent i2. In particular, there

is an agent j3 ∈ I \{i1, i2, i3} such that i2 �o4 j3 and j3 �o1 i1. If j3 �o3 i2, the tie i1 ∼o3 i2 is strongly

cyclic since i1 �o2 i3 �o3 i1 and i2 �o4 j3 �o3 i2, a contradiction. But then the tie i2 ∼o3 j3 is strongly

cyclic, since {i2, j3} �o1 i1 �o2 i3 �o3 i2. Hence, we must have i3 ∼o3 i1 and a symmetric argument

shows that i4 ∼o3 i1 as well. Combining the above, we obtain that i1 �o2 {i2, i3, i4}, {i2, i3, i4} �o1 i1,
and i1 ∼o3 i2 ∼o3 i3 ∼o3 i4. It is then easy to see that no matter how agents i2, i3, i4 are ranked

relative to each other at o1 and o2, we must obtain a strong priority reversal, a contradiction. This

completes the proof that two agents in L1 ∪ . . . ∪ LKT
can never have equal priority for one of the

objects.

Now suppose there exist two distinct agents i1, i2 ∈ L1 ∪ . . . ∪ LKF−1 such that i1 ∼o1 i2 for some

object o1 ∈ O. By the above, there are two cases left to consider (a) i1, i2 ∈ LKT+1 ∪ . . .∪LKF−1, and

(b) i1 ∈ LKT+1 ∪ . . . ∪ LKF−1 and i2 ∈ L1 ∪ . . . ∪ LKT
.

We consider case (a) first. We must have LKF
∪ . . . ∪ LK 6= ∅ since KF is the smallest integer

k ≥ KT such that Lk ∪ . . . ∪ LK is connected. Thus, for all i ∈ LKT+1 ∪ . . . ∪ LKF−1 and all o ∈ O,

i �o (LKF
∪ . . . ∪ LK). Now, since I is connected there must exist an object o2 6= o1, an agent
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i3 ∈ LKF
∪ . . . ∪ LK , and an agent i4 ∈ L1 ∪ . . . ∪ LKT

, such that i3 �o2 i4. By definition of KF ,

we must have {i1, i2} �o2 i3 �o2 i4 so that we obtain a strongly cyclic tie if either i3 �o1 i1 or

i4 �o1 i1. Since � is an IB environment, we must thus have i1 ∼o1 i2 ∼o1 i3 ∼o1 i4. However, since

i4 ∈ L1 ∪ . . . ∪ LKT
there is an object o3 and an agent i5 ∈ L1 ∪ . . . ∪ LKT

such that i4 �o3 i5. As

shown above, � |(L1∪...∪LKT
) must be strict, and by i4, i5 ∈ L1 ∪ . . . ∪ LKT

, it has to be the case that

i5 �o1 i4 ∼o1 i1 ∼o1 i2. Since {i1, i2} �o2 i4 �o3 i5 �o1 {i1, i2}, the tie i1 ∼o1 i2 is strongly cyclic, a

contradiction.

Next, we consider case (b). By the above, � |(L1∪...∪LKT
) is strict and because � is an IB environ-

ment, we must have (L1∪. . .∪LKT
)\{i2} �o1 i2. By the definition of KF and i1 ∈ LKT+1∪. . .∪LKF−1,

we must have (LKF
∪ . . . ∪ LK) ∼o1 i1. Since I is connected and (LKT+1 ∪ . . . ∪ LKF−1) �o

(LKF
∪ . . . ∪ LK) for all objects o, there must exist an agent i3 ∈ LKF

∪ . . . ∪ LK and an agent

i4 ∈ L1 ∪ . . . ∪ LKT
such that i3 �o2 i4 for some object o2 ∈ O \ {o1}. By definition of KF , we

must have i1 �o2 i4 as well. If i4 6= i2, the tie i1 ∼o1 i3 is strongly cyclic since i4 �o1 i2 ∼o1 i1 as

� |(L1∪...∪LKT
) is strict and {i1, i3} �o2 i4. If i4 = i2, there must exist an agent i5 ∈ L1 ∪ . . . ∪ LKT

such that i2 �o3 i5 for some object o3 since i2 ∈ L1 ∪ . . .∪LKT
. Since {i1, i3} �o2 i2 �o3 i5 �o1 i2 (by

i5 ∈ (L1 ∪ . . . ∪ LKT
) \ {i2}), the tie i1 ∼o1 i3 is strongly cyclic, a contradiction.

Proof of Lemma 2

Note that by the definition of KF , IT = I\(L1 ∪ . . . ∪ L(KF−1)) must be connected (with respect

to � |IT ). Hence, |L1(IT )| ≥ 2 if |IT | ≥ 4. Now assume |L1(IT )| ≥ 3 and let i1, i2, i3 ∈ L1(IT ) be

three distinct agents. If � |IT is not a HET environment and |IT | ≥ 4, there must exist an object

o1 ∈ O such that (w.l.o.g.) i1 �o1 i4 �o1 {i2, i3} for some i4 ∈ IT (who may or may not be in L1(IT )).

By definition of KT and L1(IT ), we cannot have i2 �o1 i3 or i3 �o1 i2, as otherwise either i2 or i3

must have at most fourth highest priority among agents in IT for o1. Hence, i2 ∼o1 i3 and since

i2, i3 ∈ L1(IT ), this tie is strongly cyclic: there are two distinct objects for which i2 and i3 have the

unique highest priority among agents in IT , so that in particular both of them have strictly higher

priorities for these objects than i1 and i4. Now suppose that � |IT is a HET environment, so that

K = 1. Since I is connected and � is not a HET environment, there must exist an agent i5 ∈ I \ IT
such that (w.l.o.g.) i1 �o2 i5 �o2 (L1(IT ) \ {i1}) for some o2 ∈ O. Let o3 ∈ O be such that i2 �o3 i1.
A tie i5 ∼o3 i1 is strongly cyclic and hence we must have i5 �o3 i1 as well (since � |IT is a HET

environment, we must have i1 ∼o3 i3, so that i1 �o3 i5 is impossible). Since i3 ∈ L1(IT ), there is

an object o4 ∈ O \ {o2, o3} such that i3 �o4 i2. But then the tie (remember that we assumed � |IT
is a HET environment) i1 ∼o3 i3 is strongly cyclic (by i1 �o2 i5 �o3 i1 and i3 �o4 i2 �o3 i3), a

contradiction to solvability. Hence, we must have |L1(IT )| = 2, which is (i). It is straightforward to

adapt the arguments above to show that |Lk(IT )| ≤ 2 for all k ∈ {1, . . . ,K}, which also establishes

part (iii) of the lemma.

Hence, we are left to establish part (ii). Suppose to the contrary that there is some smallest

k ∈ {2, . . . ,K−1} such that |Lk(IT )| = 2. Let i1, i2 ∈ Lk(IT ) be two distinct agents. Since k ≤ K−1,

there must be a third agent i3 ∈ Lk+1(IT ) such that r[k+1](�o1 |IT ) = i3 for some o1 ∈ O. Since k

is the smallest integer greater or equal than two such that |Lk(IT )| ≥ 2 and |L1(IT )| = 2, we must

have |L1(IT )∪ . . .∪Lk−1(IT )| = k. Furthermore, priorities in the strict part of � |IT vary by at most

three ranks, so that {i1, i2} ⊆ r[k+2](�o1 |IT ) and in particular i1 ∼o1 i2. Since i1, i2 ∈ Lk(IT ), there

exist objects o2, o3 ∈ O such that rk(�o2 |IT ) = i1 and rk(�o3 |IT ) = i2. Note that i3 ∈ Lk+1(IT )
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implies that i1 �o2 i3 and i2 �o3 i3. Furthermore, there must be an agent i4 ∈ Lk−1(IT ) such

that i1 �o2 i4. Since i3 ∈ Lk+1(IT ) and i3 �o1 i1 ∼o1 i2, we must have i4 �o1 i3 given that

i4 ∈ rk−1(�o1 |IT ) ∪ rk(�o1 |IT ) ∪ rk+1(�o1 |IT ). But then the tie i1 ∼o1 i2 is strongly cyclic since

i1 �o2 i4 �o1 i1 and i2 �o3 i3 �o1 i2. This is a contradiction and establishes (ii).

The following lemma contains some important additional properties of the exogenous tie-breaking

procedure, which will be used in the proofs below.

Lemma 6. Let � be a solvable IB environment such that κ > 1.

(a) If there are three distinct agents i1, i2, j ∈ I and two objects o1, o2 ∈ O such that i1 �o1 j �o1 i2
and i2 �o2 j �o2 i1, then j �o1 i2 and j �o2 i1.

(b) If |IT | ≥ 3, then there is at most one agent i ∈ L1(IT ) such that i ∈ {r1(�o |IT ), r2(�o |IT )} for

all objects o ∈ O.

(c) If there are two distinct agents i1 and i2 such that for some object o ∈ O, both i1 ∼o i2 and

i1 �′o i2, then there does not exist an agent j ∈ I\{i1, i2} and an object p such that i2 �p j �p i1.

Proof of Lemma 6

(a) Acyclicity requires that either [j ∼o1 i2 and j ∼o2 i1], or [j �o1 i2 and j �o2 i1]: If j �o1 i2, a

tie j ∼o2 i1 is strongly cyclic since {i1, j} �o1 i2. If j �o2 i1, a tie j ∼o1 i2 is strongly cyclic

since {i2, j} �o2 i1.
We will now show that i1 �o1 j ∼o1 i2 and i2 �o2 j ∼o2 i1 is impossible. Let j′ ∈ I \ {i1, i2, j}
be arbitrary. By connectedness, there exists a sequence of n distinct agents j1, . . . , jn = j′ and

a sequence of n distinct objects p1, . . . , pn such that j �p1 j1 �p2 . . . �pn jn = j′.

If j1 /∈ {i1, i2}, the tie i2 ∼o1 j is strongly cyclic if j1 �o1 j since j �p1 j1 �o1 j and i2 �o2
i1 �o1 i2. Similarly, the tie i1 ∼o2 j is strongly cyclic if j1 �o2 j. Hence, we must have j1 ∼o1 j
and j1 ∼o2 j. If jk /∈ {i1, i2} for all k ≤ n, an iterative application of these arguments yields

jk ∼o1 j and jk ∼o2 j for all k ≤ n, so that in particular j′ = jn ∼o1 j and j′ = jn ∼o2 j. Next,

suppose there is a k such that jk = i1 and jl 6= i2 for all l < k (the arguments in case there is

a k such that jk = i2 and jl 6= i1 for all l < k are completely analogous). Iterative application

of the above arguments yields jl ∼o1 j and jl ∼o2 j for all l < k. Since i1 �o1 jk−1 ∼o1 i2
and jk−1 �pk jk = i1, the tie jk−1 ∼o1 i2 is strongly cyclic unless i1 �pk i2. However, if

jk−1 �pk i1 �pk i2, the tie i1 ∼o2 jk−1 is strongly cyclic, so that we must have jk−1 �pk i1 ∼pk i2.
If jk+1 6= i2, i1 ∼pk i2 is strongly cyclic if jk+1 �pk i1 since i1 = jk �pk+1 jk+1 �pk i1 and

i2 �o2 jk−1 �pk jk = i1. Hence, we must have jk+1 ∼pk i1 ∼pk i2 so that in particular

jk−1 �pk jk+1. If jk+1 �o1 i2, the tie jk−1 ∼o1 i2 is strongly cyclic since jk−1 �pk jk+1 �o1 jk−1

and i2 �o2 i1 �o1 i2. Hence, jk+1 ∼o1 i2. Similarly, the acyclicity of i1 ∼o2 jk−1 requires that

jk+1 ∼o2 i1. Note that these arguments trivially apply in case of j1 = i1 (set j0 := j in the

previous arguments). If jl 6= i2 for all l > k, iterative application of these arguments yields

jl ∼o1 i1 and jl ∼o2 i2 for all l > k, so that in particular j′ ∼o1 i1 and j′ ∼o2 i2.
So suppose there is a k′ > k such that jk

′
= i2 (and jk = i1). If k′ > k + 1, then using

the same arguments as above, we find that acyclicity requires jl ∼o1 i2 and jl ∼o2 i1 for all

l ∈ {1, . . . , k−1, k+1, . . . , k′−1}. But then, similar arguments to above show that we must have

jk
′−1 �pk′ i1 ∼pk′ i2. The tie i1 ∼pk′ i2 is strongly cyclic if jk

′+1 �pk′ i1 since i2 = jk
′ �pk′+1

jk
′+1 �pk′ i2 and i1 �o1 jk

′−1 �pk′ j
k′ = i2 ∼pk′ i1. Hence, we must have i1 ∼pk′ i2 ∼pk′ j

k′+1,
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so that in particular jk
′−1 �pk′ j

k′+1. But then the acyclicity of i2 ∼o1 jk
′−1 requires that

jk
′+1 ∼o1 i2 and the acyclicity of i1 ∼o2 jk

′−1 requires that jk
′+1 ∼o2 i1. If k′ = k + 1, the tie

i2 ∼o1 jk−1 (where j0 := j) is strongly cyclic if jk+2 �o1 i2 since i2 = jk+1 �pk+2 jk+2 �o1 i2
and jk−1 �pk jk = i1 �o1 jk−1. But the tie i2 ∼o1 jk+2 would also be strongly cyclic if

{jk+2, i2} �o2 i1, so that we must have jk+2 ∼o2 i1 as well. Thus, no matter whether k′ = k+ 1

or k′ > k + 1, iterative application of these arguments shows that we must have jl ∼o1 i2 and

jl ∼o2 i1 for all l > k′. In particular, j′ ∼o1 i2 and j′ ∼o2 i1. Since j′ was arbitrary, we obtain

that r2(�o1) = I \ {i1} and r2(�o2) = I \ {i2}.
Since |I| ≥ 3, connectedness also implies that there must be some agent i3 ∈ I \ {i1, i2} such

that (w.l.o.g.) i3 �o3 i1 for some object o3 (otherwise, {i1, i2} �o I \ {i1, i2} for all objects o).

Acyclicity of the ties i1 ∼o2 i3 and i2 ∼o1 i3 requires that i1 ∼o3 i2. Using the same arguments

as above, we obtain r2(�o3) = I \ {i3}. However, since κ > 1 there must exist an object o4

such that r3(�o4) 6= ∅. Since at least one of the agents i1, i2, i3 must have at most third highest

priority for o4, at least one of the ties at o1, o2, o3 must be strongly cyclic, a contradiction.

(b) Suppose to the contrary that there are two distinct i1, i2 ∈ L1(IT ) such that {i1, i2} ⊆ {r1(�o
|IT ), r2(�o |IT )} for all objects o ∈ O even though |IT | ≥ 3. Let o1 and o2 be two objects such

that {i1} = r1(�o1) and {i2} = r1(�o2). Since |IT | ≥ 3 and IT is connected, there must be

a third agent i3 and an object o3 such that (w.l.o.g.) i3 �o3 i1. Since neither i1 nor i2 can

have third highest priority for an object among agents in IT , we must have i1 ∼o3 i2. This tie

is acyclic only if i1 �o1 i2 ∼o1 i3 and i2 �o2 i1 ∼o2 i3. If there exists an object p such that

|r2(�p |IT )| = 1, we must have {i1, i2} = r1(�p |IT )∪ r2(�p |IT ) and hence {i1, i2} �p i3 so that

i1 ∼o3 i2 is strongly cyclic. This implies that � |IT is a HET environment. Since � is a solvable

IB environment such that κ > 1, we must have IS 6= ∅. By assumption, I is connected so that

there must be an agent j ∈ IS such that (w.l.o.g.) i1 �o1 j. Since j ∈ IS , there is an agent

j′ ∈ IS such that j �q j′ for some object q. A tie j ∼o1 i2 is strongly cyclic, since j′ �o1 j by

Lemma 1 and i2 �o2 i1 �o1 i2. Hence, we must have j �o1 i2 ∼o1 i3. But then j �o2 i1 ∼o2 i3,
since a tie j ∼o2 i1 would be strongly cyclic given that {i1, j} �o1 i2 �o2 i1. Since i1 �o1 j �o2 i1
and i3 �o3 i2 �o2 i3, the tie i1 ∼o2 i3 must be strongly cyclic, a contradiction.

(c) Let i1 and i2 be two distinct agents such that i1 ∼o i2 and i1 �′o i2. Suppose to the contrary

that there is an agent j ∈ I \ {i1, i2} and an object p such that i2 �p j �p i1. For the following

note that {i1, i2} ⊆ IS is impossible by Lemma 1.

Consider first the case of i1 ∈ IS and i2 ∈ IT . We show first that if j ∈ IS \ {i1}, there cannot

be an object q such that i1 �q j: otherwise, Lemma 1 would imply that j �o i1 ∼o i2, so that

by acyclicity j �q i2. If either i1 �q j ∼q i2 or i2 �p j ∼p i1, we obtain a contradiction to the

just proved part (a) of this lemma. Hence, we must have j �q i2 as well as j �p i1. Now let

q̃ be such that i1 = rki1 (�q̃). Note that i1 ∈ IS and i2 ∈ IT imply ki1 < ki2 and that i2 �p i1
implies q̃ 6= p. By definition, there must be at least ki2 − 1 agents with strictly higher priority

for p than agent i2. As there are only ki1 − 1 < ki2 − 1 agents with strictly higher priority for q̃

than i1, there must be at least one agent j′ ∈ I \ {i1, i2} such that i1 �q̃ j′ �p i2. Since i2 �p j,
we must have j 6= j′. If j′ �o i1, the tie i1 ∼o i2 is strongly cyclic since i1 �q̃ j′ �o i1 and

i2 �p j �o i2. However, given that {i2, j′} �p i1 �q j �o i2, a tie i2 ∼o j′ must be strongly

cyclic. Hence, if j ∈ IS \ {i1}, there cannot be an object q such that i1 �q j.
Since i1 ∈ IS , there is an agent j′ ∈ IS and an object q such that i1 �q j′. By the above and
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Lemma 1, we must have j 6= j′ as well as j′ �o i1 ∼o i2. If j �o i1 ∼o i2, we obtain an immediate

contradiction to acyclicity. Hence, j ∼o i1 ∼o i2. But then we must also have i2 �p j ∼p i1,
since otherwise j ∼o i2 would be strongly cyclic given that {j, i2} �p i1 �q j′ �o j. Since

j ∼p i1 and � is an IB environment, we must have j′ �p i1 by Lemma 1. Now note that since

I is connected, there must exist a sequence of n distinct agents j1, . . . , jn = i2 and a sequence

of objects p1, . . . , pn such that j �p1 j1 �p2 j2 . . . �pn jn = i2. If j1 = i2, the tie j ∼p i1 is

strongly cyclic since j �p1 i2 �p j and i1 �q j′ �p i1. If j1 = j′, j ∼p i1 is strongly cyclic, since

i1 must have strictly higher priority than i2 for at least one of the objects given that ki1 < ki2 .

Hence, j1 /∈ {i2, j′} and acyclicity implies j1 ∼p i1 as well. We can obviously repeat all of the

above arguments with j1 in place of i1. Proceeding iteratively, we must eventually obtain a

contradiction to acyclicity.

Next, consider the case of i1, i2 ∈ IT . If |IT | = 2, there is nothing to show, since i1 ∼o i2 and

i1 �′o i2 means that only i1 can ever have strictly higher priority for one of the objects than any

agent in IS . So suppose that |IT | = 3 and let i3 be the third agent in IT . Note that we must

have i1 ∈ L1(IT ) and that i1 always has at least second highest priority among agents in IT ,

as otherwise we would not have set i1 �′o i2. Suppose first that i2 �p j �p i1. Since i1 always

ranks at least second among agents in IT , this is only possible when j ∈ IS and i1 �p i3. In

particular, j �p i3. Since i1 is always ranked at least second among agents in IT , part (b) of

this Lemma implies that there exists an object q such that {i1, i3} �q i2. Since a tie i1 ∼p i3 is

strongly cyclic, we must have i1 �p i3. If i3 �o i1, the tie i1 ∼o i2 is then strongly cyclic since

{i1, i2} �p i3. If j �o i1, the tie i1 ∼o i3 is strongly cyclic since {i1, i3} �q i2 �p j �o i1. But in

the only remaining possibility of i1 ∼o i2 ∼o i3 ∼o j, we obtain a strong priority reversal given

that {i1, i3} �q i2 and i2 �p j �p i1 �p i3. Hence, we must have i2 �p j ∼p i1. If j = i3, the

tie i1 ∼p i3 is strongly cyclic since {i1, i3} �q i2. Hence, j ∈ IS and the acyclicity of i1 ∼p j
requires that i1 �q i2 �q j. Summarizing our findings, we have j ∈ IS , i1 ∈ IT , j ∼p i1, j �′p i1,
and i1 �q i2 �q j in this case. As we have already established above, this is impossible.

Hence, we are left to discuss the case of |IT | ≥ 4. Assume that i1 ∈ Lk(IT ) and i2 ∈ Lk′(IT ).

By i1 �′o i2, we have k ≤ k′. Note that k′ ≤ k+1 since agents with priority levels k+2 or above

can never have strictly higher priority than i1 for one of the objects.

Suppose first that k′ = k + 1. If i2 �p j �p i1, we must have j ∈ IS since otherwise we

cannot have i1 ∈ rk(�p |IT ) ∪ rk+1(�p |IT ) ∪ rk+2(�p |IT ). However, there has to exist an agent

j′ ∈ Lk−1(IT ) ∪ Lk(IT ) such that j′ �p i2 and i1 �q {i2, j′} for some q 6= p. Acyclicity is

easily seen to require that i1 ∼o i2 ∼o j ∼o j′. If i1 �q j′ �q i2, we obtain a strong priority

reversal between i1 and i2. Since j′ ∈ Lk−1(IT )∪Lk(IT ) and i2 ∈ Lk+1(IT ), the only remaining

possibility is that i1 �q i2 ∼q j′. However, since {i2, j′} �p i1, the tie i2 ∼q j′ is strongly

cyclic. Hence, we must have i2 �p j ∼p i1. If j ∈ IS , we obtain a contradiction to acyclicity

since for any object p′ such that i1 �p′ i2 (such an object must exist given that i1 ∈ Lk(IT )

and i2 ∈ Lk+1(IT )), our arguments above show that j �p′ i2 as well, so that j ∼p i1 would be

strongly cyclic. Hence, we must have j ∈ IT as well. If there is an object q such that j �q i2,
acyclicity of i1 ∼p j requires i2 �q i1. Since i2 ∼q i1 implies a contradiction to part (a) of this

Lemma (as i2 �p i1 ∼p j and j �q i1 ∼q i2), we must have i2 �q i1. This implies j ∈ Lk(IT )

and, by Lemma 2, k = 1 as well as L1(IT ) = {i1, j}. But since i2 �p i1 ∼p j, this contradicts

|IT | ≥ 4 (which, by Lemma 2 is only possible if |L1(IT )| = 2). Hence, j must always have weakly
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lower priority than agent i2. This implies that j must always have weakly lower priority than i1

as well. Since IT is connected, there must exist a sequence of n distinct agents j1, . . . , jn = i2

in IT and a sequence of objects p1, . . . , pn such that j �p1 j1 �p2 j2 . . . �pn jn = i2. By the

previous discussion we must have j1 ∈ IT \ {i1, i2}. If j1 �p j, the tie i1 ∼p j is strongly

cyclic since {i1, j} �p1 j1 �p j. Hence, acyclicity implies j1 ∼p j and we can repeat all of

the above arguments with j1 in place of j. Proceeding iteratively, we must eventually obtain a

contradiction to acyclicity.

Hence, we must have k = k′. Since i1 �′o i2, k = 1 and i1 always has at least second highest

priority among agents in IT . Since |IT | ≥ 4, part (b) of this Lemma implies that there is an

agent i3 ∈ L2(IT ) and an object q ∈ O such that {i1, i3} �q i2. If i2 �p j ∼p i1, acyclicity

requires i3 �p i1, so that j 6= i3. But then i1 has at most third highest priority for p among

agents in IT , contradicting the above. Hence, i2 �p j �p i1 �p i3 and j ∈ IS . If i3 �o i1, the

tie i1 ∼o i2 is strongly cyclic so that we must have i3 ∼o i1 ∼o i2. But then if j �o i1 the tie

i1 ∼o i3 is strongly cyclic since {i1, i3} �q i2 �p j �o i1. Hence, i1 ∼o i2 ∼o i3 ∼o j and we

obtain a strong priority reversal as {i1, i3} �q i2 and i2 �p j �p i1 �p i3. This contradiction

completes the proof.

Proof of Lemma 3

Suppose first that i1, i2 ∈ IT are two distinct agents such that i1 ∼o i2, but not necessarily i1 ∼′o i2,
and i2 �p i1 for two distinct objects o and p. We now show that whenever i1 �q j for some agent

j ∈ IS and an object q, then j �q i2. Since j ∈ IS , there must exist an agent j′ ∈ IS such that

j �r j′ for some object r. But by Lemma 1 we must have j �o j′ or j′ �o j, so that either j �o i1
or j′ �o i1. Hence, the tie i1 ∼o i2 is strongly cyclic if {i1, i2} �q j. Now suppose that i1 �q j ∼q i2.
The tie j ∼q i2 is strongly cyclic unless i1 �p j. But i2 ∈ IT and j ∈ IS imply that j �′q i2. Since

i2 �p i1 �p j, we obtain a contradiction to Lemma 6 part (c).

For the remainder of this proof let i1 and i2 be two distinct agents such that i1 ∼′o i2 for some object

o ∈ O. Note that by our exogenous tie-breaking procedure, we must have i1 ∼o i2 and {i1, i2} ⊆ IT .

Furthermore, there must exist objects p and q such that i1 �p i2 and i2 �q i1.
We first establish the Lemma for the case of IT = {i1, i2}. Since I is connected and |I| ≥ 4, at least

one of the agents in IT , say i1, must have strictly higher priority than some agent in IS for at least

one of the objects. By the rules for exogenous tie-breaking, i1 ∼′o i2 then implies that the same must

be true for i2. Hence, there are agents j1, j2 ∈ IS and objects p1, p2 such that i1 �p1 j1 and i2 �p2 j2.
By the above, we must have j1 �p1 i2 and j2 �p2 i1. Now suppose that contrary to what we want to

show j1 6= j2. By acyclicity, we cannot have {j1, j2} �o i1. If j1 �o i1 ∼o i2 ∼o j2, the tie i2 ∼o j2 is

strongly cyclic, since {i2, j2} �p2 i1 �p1 j1 �o i2. If j2 �o i1 ∼o i2 ∼o j1, the tie i1 ∼o j1 is strongly

cyclic, since {i1, j1} �p1 i2 �p2 j2 �o i1. By Lemma 1 and {j1, j2} ⊆ IS , these are the only remaining

possibilities so that j1 6= j2 necessarily leads to a contradiction. Hence, we must have j1 = j2 and

we can set ji1,i2 := j1 = j2. The above arguments establish that i1 �q ji1,i2 implies ji1,i2 �q i2 and

i2 �q ji1,i2 implies ji1,i2 �q i1, so that conditions (1) - (3) of Lemma 3 are satisfied.

Next, suppose that |IT | = 3 and let j1 be such that {i1, i2, j1} = IT . By the connectedness of IT

and the rules for exogenous tie-breaking, we must have {i1, i2} ⊆ L1(IT ) and that both, i1 and i2, have

the lowest priority among agents in IT for at least one of the objects. Hence, there exist objects p1, p2

such that {i1, j1} �p1 i2 and {i2, j1} �p2 i1. We will now argue that there cannot be an object q such
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that i1 �q j2 for some j2 ∈ IS . Suppose the contrary. By the above, we must have i1 �q j2 �q i2. Since

i2 ∈ L1(IT ), there exists an object r such that i2 �r {i1, j1}. If {j1, j2} �o i1, the tie i1 ∼o i2 is strongly

cyclic. If j2 �o i1 ∼o i2 ∼o j1, the tie i2 ∼o j1 is strongly cyclic since {i2, j1} �p2 i1 �q j2 �o i2. If

j1 �o i1 ∼o i2 ∼o j2, the tie i1 ∼o j2 is strongly cyclic since {i1, j2} �q i2 �r j1 �o i1. Hence, we

must have i1 ∼o i2 ∼o j1 ∼o j2. Given that i1, j1 ∈ IT , j1 �p2 i1, and i1 ∼o j1, the above implies

i1 �q j2 �q {i2, j1}. Since {i2, j1} �p2 i1 we obtain a strong priority reversal. A completely analogous

argument shows that i2 can also never have strictly higher priority for one of the objects than any

agent in IS . Hence, IS �p {i1, i2} for all p ∈ O. Since I is connected, this implies that j1 must have

strictly higher priority than one of the agents in IS for at least one of the objects and that j1 ∈ L1(IT )

as well. Now let ji1,i2 := j1 and q1 and q2 be two objects such that i1 �q1 ji1,i2 and i2 �q2 ji1,i2 . To

complete the proof in case of |IT | = 3, we will now show that if i1 �q ji1,i2 for some object q, then

ji1,i2 �q i2. Note first that given the assumed connectedness of I and |I| ≥ 4, there must exist an

object q′ such that ji1,i2 �q′ j3 for some j3 ∈ IS . If {i1, i2} �q ji1,i2 , the tie i1 ∼o i2 would be strongly

cyclic unless ji1,i2 ∼o j3 ∼o i1 ∼o i2. By the above, we must then have ji1,i2 �q′ j3 �q′ {i1, i2}. Since

{i1, i2} �q ji1,i2 and ji1,i2 �q′ j′ �q′ {i1, i2}, we obtain a strong priority reversal. If i1 �q ji1,i2 ∼q i2,
we obtain a contradiction to acyclicity since {i2, ji1,i2} �p2 i1. A completely analogous argument

shows that if i2 �q ji1,i2 for some q, then ji1,i2 �q i1. This completes the proof in case |IT | = 3.

Hence, we are left to consider the case of |IT | ≥ 4. Here, we show first that {i1, i2} = L1(IT ) is

impossible. Suppose the contrary. Note that our rules for exogenous tie-breaking imply that both i1

and i2 have third highest priority among agents in IT for at least one of the objects. Hence, if there

are two distinct agents i3, i4 ∈ L2(IT ), there must exist two objects p1, p2 such that i1 �p1 i3 �p1 i2
and i2 �p2 i4 �p2 i1. If either i3 �o i1 or i4 �o i2, we obtain a contradiction to acyclicity. If

i1 ∼o i2 ∼o i3 ∼o i4, we obtain a strong priority reversal (i1, i2, i3, i4, o, p1, p2). So suppose that

{i3} = L2(IT ) and let i4 ∈ L3(IT ) be arbitrary. As before, i1 ∼′o i2 implies that there exist two

objects p1 and p2 such that i1 �p1 i3 �p1 i2 and i2 �p2 i3 �p2 i1. Furthermore, since i4 ∈ L3(IT ) and

{i1, i2, i3, i4} ⊆ IT , there must exist an object p3 such that {i1, i2} �p3 i4 �p3 i3. Since i4 ∈ L3(IT ), it

has to be the case that i2 �p1 i4 and i1 �p2 i4. Since {i1, i2, i4} �p3 i3, acyclicity requires i2 �p1 i4 and

i1 �p2 i4. But then the tie i1 ∼o i2 is strongly cyclic unless i1 ∼o i4 as well. However, in this case the

weak priority reversal (i1, i2, i3, o, p1, p2) would not be consistent. This shows that {i1, i2} = L1(IT ) is

impossible when |IT | ≥ 4. We are hence left to consider the case of {i1, i2} = LK(IT ) for some K ≥ 2.

Let j ∈ I \ {i1, i2} and p be such that i1 �p j. If j ∈ IS , the above arguments imply that j �p i2. If

j ∈ IT , the definition of IT implies that j ∈ LK−1(IT ) and j �p i2, since otherwise j would have at

most K + 2nd highest priority for p. Now suppose that j ∼p i2. Since {i1, i2} = LK(IT ), there is an

object q such that i2 �q i1. Since j ∼p i2 would otherwise be strongly cyclic, we must have i1 �q j.
But then we obtain a contradiction to Lemma 6 (c) since i2 ∼p j, j �′p i2, and i2 �q i1 �q j. This

shows that whenever i1 �p j for some j ∈ I \ {i1, i2}, we must have j �p i2. An analogous argument

shows that if i2 �p j for some j ∈ I \ {i1, i2}, then j �p i1. Now by the connectedness of I and IT ,

there must be two agents j1, j2 ∈ I \ {i1, i2} and two objects p1, p2 such that i1 �p1 j1 �p1 i2 and

i2 �p2 j2 �p2 i1. If j1 6= j2, acyclicity would require that i1 ∼o i2 ∼o j1 ∼o j2. But then we obtain a

strong priority reversal (i1, i2, j1, j2, o, p1, p2). Hence, there must be a unique agent ji1,i2 ∈ LK−1(IT )

who can have strictly lower priority for some of the objects than either i1 or i2 and this agent can

never rank below i1 and i2. This completes the proof.

Proof of Corollary 3
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Assume to the contrary that � is neither a HET environment nor strict.

Note first that under the conditions of the corollary, there cannot be a pair of distinct agents i1, i2

such that i1 ∼′o i2 for some o: Perfect pairwise variability and |I| ≥ 4 imply that there exist two (not

necessarily distinct) objects p1, p2 and two distinct agents j1, j2 such that i1 �p1 j1 and i2 �p2 j2.
Hence, we obtain a contradiction to Lemma 3 if i1 ∼′o i2.

Now suppose that there are two distinct agents i1, i2 such that i1 ∼o i2 and i1 �′o i2. If there is

an agent i3 such that i3 �o i1, we must obtain a contradiction to either Lemma 6 (c) or acyclicity:

by perfect pairwise variability there must exist an object p such that i2 �p i3 and the tie i1 ∼o i2
is strongly cyclic unless i2 �p i3 �p i1. Hence, given that |I| ≥ 4, we can assume w.l.o.g. that

there are four distinct agents i1, i2, i3, i4 such that i1 ∼o i2 ∼o i3 ∼o i4 and i1 �′o i2 �′o i3 �′o i4.
By perfect pairwise variability there exists an object q such that i4 �q i1. Since {i1, i2, i3} ∼o i4
and {i1, i2, i3} �′o i4, Lemma 6 (c) implies that {i2, i3} �q i4 �q i1. But since {i2, i3} ∼o i1 and

i1 �′o {i2, i3} we still obtain a contradiction to Lemma 6 (c) and this completes the proof.

B.1 Proof of Theorem 3

It is immediate that the outcome of the ADA-ETB is always stable, since an agent is rejected by some

object only if some other agent with at least weakly higher priority also applies it. Now suppose to

the contrary that for some profile R, AT�(R) admits a SIC i1, . . . , iL. We assume without loss of

generality that the SIC is minimal in the sense that no strict subset of {i1, . . . , iL} forms a SIC. Set

AT�il (R) := ol for all l ∈ {1, . . . , L} and let {µt}t denote the sequence of temporary assignments in

the ADA-ETB.

Let t0 be the round in which iL is rejected by o1 and J0 be the set of agents temporarily matched

to o1 by the end of round t0. We now gather some preliminary observations about t0 and J0: first,

since the labeling of agents in a stable improvement cycle is immaterial, we can assume without any

loss of generality that there is no round t < t0 in which some agent il ∈ {i1, . . . , iL} is rejected by

ol+1. Second, since iL has to be one of the highest priority agents desiring o1 at AT�(R), we must

have J0 ∼o1 iL: if there was some j ∈ J0 such that j �o1 iL, we would have |J0| = 1 since � is an IB

environment. Furthermore, the definition of t0 implies that j 6= i1. Since o1 6= AT�j (R), iL cannot be

one of the highest priority agents among those who desire o1 at AT�(R). This implies in particular

that there cannot be a SIC for strict environments. Third, the definition of t0 implies that i1 /∈ J0.
But then we must have |J0| = 1, since the rules of the ADA-ETB imply that |J0| > 1 is possible only

if |I| = 3. But in this case |J0| ≥ 2 implies i1 ∈ J0, contradicting our definition of t0. In the following,

let i0 be the unique agent in J0. Finally, note that we must have i0 /∈ {i1, . . . , iL} since otherwise

agents in some strict subset of {i1, . . . , iL} would form a SIC, contradicting the assumed minimality.

We now first derive a contradiction in case � is not a HET environment and |I| = 3. In this case

we must have L = 2 and µt0(i1) = o2. Since AT�i2 (R) = o2, stability requires i2 �o2 i1. But then we

must also have i0 �o2 i1, since otherwise {i1, i2} �o2 i0 given that � is an IB environment, so that i2

could not have been rejected by o2 in favor of i0. Hence, we are left to discuss three possible cases:

(a) {i0, i2} �o2 i1, (b) i0 �o2 i1 ∼o2 i2, or (c) i0 ∼o2 i1 ∼o2 i2.25 Note also that i2 must be temporarily

matched to object o2 when i1 applies to o1. In case (a), acyclicity requires that i1 ∼o1 i0. Since i1 has

25Given that AT�i1 (R) = o1 and |I| = 3, it could clearly not have been the case that i1 was rejected by some
object in favor of i0 prior to round t0.
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the lowest priority for object o2, we cannot have i1 �′o1 i0. Since i2 = ji0,i1 and {i0, i2} �o2 i1, i0 would

not have been rejected by o1 in favor of i1. In case (b), i1 ∼o2 i2 is strongly cyclic unless i0 always has

at least second highest priority. By Lemma 6 (b), both i1 and i2 must have third highest priority for

some of the objects. Acyclicity then requires i1 ∼o1 i0 and the rules for exogenous tie-breaking yield

i0 �′o1 i1, so that i0 could not have been rejected by o1 in favor of i1. In case (c), neither i1 nor i2

can always have at least second highest priority for all objects given that i1 is rejected by o2 in favor

of i2 and i2 is rejected by o1 in favor of i0. But then the tie i0 ∼o1 i2 would be strongly cyclic unless

i1 ∼o1 i0 as well. Furthermore, we must have i2 �′o2 i1 or i2 > i1, and i0 �′o1 i2 or i0 > i2, so that

again i0 could not have been rejected by o1 in favor of i1, contradicting AT�i1 (R) = o1.

For the remaining cases we now show first that i0 ∼′o1 iL is impossible.

Case 1: � is a HET environment

Since iL is rejected by o1 in favor of an equal priority agent i0, there must be a cycle in the

tie-breaking routine of round t0 that included i0 and o1.

We now show more generally that whenever a cycle C = (j1, p1, . . . , jN , pN ) forms in the tie-

breaking routine of some round t, then no agent in this cycle is subsequently rejected by the

object she points to. This implies that i0 could not have been subsequently rejected by o1 and

completes the proof in Case 1.

Suppose the contrary and let t′ > t be the first round of the ADA-ETB where such a rejection

occurs. This implies that there must be some n ∈ {1, . . . , N} such that jn+1 is not the owner of

pn (where jN+1 := j1): a cycle in which each agent points to the object owned by the next agent

in the cycle will form in each subsequent tie-breaking stage, so that no agent in the cycle would

subsequently be rejected by the object she points to. Furthermore, since in each iteration of the

tie-breaking routine, all objects that do not point to their owners point to the same agent, pn

can be the only object in the cycle that is not owned by jn+1. If jn is rejected by pn in round

t′ since its owner applied to it, we obtain a contradiction to the definition of t′: the owner of pn

must have been part of a cycle C ′ that was formed in the tie-breaking routine of round t, since

a cycle containing an object but not its owner can only be formed once the owner is removed

from the set of agents to be considered in the tie-breaking routine. But then the owner of pn

must have been rejected by the object she pointed to in C ′ in some round t′′ < t′. This is a

contradiction to the definition of t′. Hence, the first rejection of an agent from C must occur

in the tie-breaking routine of round t′. Every arrow from C except potentially the arrow from

pn to jn+1 will be present at the beginning of the tie-breaking routine. If the arrow from pn to

jn+1 does not form, there must be a cycle C1 = (j11 , p
1
1, . . . , j

1
N1
, p1N1

) such that (a) C1 formed

in (the tie-breaking routine of Round) t before C and does not form in t′, and (b) one of the

agents in C1 either owns pn or has a higher index than jn+1. By the definition of t′, all arrows

from agents in C1 to objects in C1 are present at the beginning of the tie-breaking routine of

round t′. As above, there must thus be an n1 such that j1n1+1 is not the owner of p1n1
and we

can repeat all of the above arguments with j1n1+1 in place of jn1+1. Given the finiteness of the

problem it is clear, that we must eventually obtain a contradiction.

Case 2: � is not a HET environment and |I| ≥ 4

In this case i0 ∼′o1 iL implies that {i0, iL} ⊆ LK(IT ) and that �′ |I\{i0,iL} is strict. Furthermore,

as argued above it has to be the case that i0 6= iL−1. By the rules of the ADA-ETB, assignments
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for i0 and iL are determined only after objects have been temporarily assigned among agents

in I \ {i0, iL}. Since t0 is the first round of the ADA-ETB in which an agent is rejected by

the final assignment of her successor in the SIC, we must thus have µt0(iL−1) = oL. By the

construction of �′, we can only have AT�iL(R) = oL if iL �oL iL−1. By Lemma 3, we must have

iL−1 �oL i0. But then i0 would have been rejected by o1 in favor of iL unless there was a round

s < t0 in which iL−1 was rejected by some object p 6= o1 in favor of i0. By Lemma 3, this is

possible only if io �p iL−1 �p iL. Furthermore, i0 ∈ µt0(o1) is possible only if there is a round

t′ ∈ {s + 1, . . . , t0 − 1} in which i0 is rejected by p. However, this is possible only if there is a

round t ∈ {s+ 1, . . . , t′ − 1} in which some agent j ∈ I \ {i0, iL−1, iL} is rejected by oL in favor

of iL−1. In particular, iL−1 �oL j so that, by Lemma 3, we must have iL−1 �oL {i0, iL}, which

is a contradiction.

Since no ties are broken exogenously in a HET environment, the above already establishes con-

strained efficiency of the ADA-ETB in this case. So suppose that � is not a HET environment and

|I| ≥ 4. The above implies that i0 �′o1 iL. Now assume that for some l ∈ {1, . . . , L} we have shown

i0 ∼o1 il′ and i0 �′o1 il′ for all l′ ∈ {l, . . . , L}. We show that i0 ∼o1 il−1 and i0 �′o1 il−1 as well.

Since olPil−1
ol−1, there must exist some object p ∈ O such that il �p il−1. Otherwise il−1 could never

envy il. By the inductive assumptions of il ∼o1 i0 and i0 �′o1 il, and by Lemma 6 (c), we must have

i0 �p il−1 as well. Acyclicity immediately implies il−1 ∼o1 i0. If i0 �p il �p il−1, Lemma 6 (c) together

with i0 ∼o1 il−1 implies i0 �′o1 il−1. Since i0 �′o1 il and i0 ∼o1 il, we cannot have i0 ∼′o1 il−1, so that

i0 �′o1 il−1. For the only remaining case of il �p i0 �p il−1, Lemma 6 (c) implies il �′o1 il−1, so that

i0 �′o1 il−1 by transitivity. This inductive argument completes the proof since it implies that i0 could

not have been rejected by o1 in favor of i1, contradicting AT�i1 (R) = o1.

B.2 Proof of Theorem 4

For this proof we assume that � is solvable but not a HET environment, since group strategy-proofness

is known in that case (see Papai (2001)).

Suppose to the contrary that a coalition J ⊆ I can manipulate at some profile R by submitting

some joint manipulation R̃J . Let R̃ = (R̃J , R−J) and let {µt}Tt=0 and {νt}T ′t=0 be the sequences of

temporary assignments in the ADA-ETB under R and R̃, respectively. Since the ADA for strict

priority structures is group strategy-proof, there has to be at least one different tie-breaking decision

in the ADA-ETBs associated with R and R̃. So there must be two distinct i1, i2 ∈ I such that for

some o ∈ O with i1 ∼′o i2, (a) i1 is rejected by o in favor of i2 in (the tie-breaking routine of) round t of

the ADA-ETB for the preference profile R, and (b) i2 is rejected by o in favor of i1 in (the tie-breaking

routine of) round t′ of the ADA-ETB for the preference profile R̃. We cover the two cases |I| ≥ 4 and

|I| ≤ 3 separately.

Case 1: |I| ≥ 4

In this case our tie-breaking rules and Lemma 3 imply that there is never a rejection subsequently

to a tie-breaking decision between i1 and i2. This follows since for all objects at most one of

i1 and i2 can rank above one of the other agents. But then we must have J ∩ {i1, i2} 6= ∅, as

otherwise agents in J could also manipulate the ADA with strict tie-breaking if there were two

copies of o (note that no agent i ∈ I \ {i1, i2} could have applied to o under either R or R̃ given

the construction of �′). In the following let p be the object i2 obtains under R̃.
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Suppose first that i2 ∈ J and note that since the ADA-ETB is individually rational, we must have

pPi2i2. Since there are no rejections subsequently to tie-breaking between i1 and i2, µ̃
t′(p) = ∅.

Now consider the joint manipulation R̂J obtained from R̃J by letting i2 exchange the preference

ranking of o and p and keeping everything else the same. Clearly, R̂J must lead to the same

outcome as R̃J . But then since i2 never applies to o under R̂, coalition J could also manipulate

the ADA if we always broke the tie i1 ∼o i2 in favor of i2, a contradiction. Hence, we must have

i2 /∈ J and i1 ∈ J .

Now suppose that |J | ≥ 2. Since i1 is rejected by o in favor of i2 when the profile of submitted

preferences is R, there cannot be a round s of the ADA-ETB under R in which an agent in

J \ {i1} was rejected by an object p in favor of i1. But then the coalition J \ {i1} could still

profitably manipulate the ADA at R if we always break all ties in favor of i2, i.e. used a strict

priority structure �′′ such that i2 �′′q i1 for all objects q such that i1 ∼q i2. To see this consider

the preference profile R̂ = (R̃J\{i1}, R(I\J)∪{i1}) and let µ̂ = ADA�
′′
(R̂). If one of the agents

j ∈ J \ {i1} is negatively affected, he must have been rejected by p := AT�j (R̃) in favor of i1.

However, since j ∈ J we must have pPjAT
�
j (R). Since all agents in J \ {i1} submit preferences

according to R̃, this is only possible if j is rejected by p in favor of i1 under the profile R, a

contradiction.

The only remaining possibility is J = {i1}. By our rules for tie-breaking and Lemma 3, there

can not be an agent j ∈ J \ {i1, i2} such that either (a) j was rejected by some object in favor

of i1 in some round s < t of the ADA-ETB for the preference profile R, or (b) µt(j) ∈ O and

i1 �µt(j) j. This, however, implies that i1 could not have affected the temporary assignment

prior to the tie-breaking decision at o. But then i2 could not have been rejected by o in favor

of i1 in round t′ of the ADA-ETB under R̃, a contradiction.

Case 2: |I| = 3

Let j be the third agent in I and set p1 := µt(j), p2 := νt
′
(j). Note that we must have p1 6= p2.

The rules for exogenous tie-breaking imply that either {i1, j} �p2 i2, or {i2, j} �p1 i1. Otherwise

the tie i1 ∼o i2 would have been broken in the same way under R and R̃. We now consider the

two possible cases in turn.

Case 2.1: {i1, j} �p2 i2
It has to be the case that p1Pjp2 since only i1 could have caused a rejection of j at p2 and

we would hence have µt(i1) = p2 otherwise.

We now show that j /∈ J . To see this note that j ∈ J implies p2Pjµ
T (j). This is possible

only if i1 �p2 j �p2 i2 and i1 applied to p2 in some round t1 > t of the ADA-ETB under

R. Furthermore, it has to be the case that p1 = o: if p1 6= o, j must have been rejected

by p1 in favor of i1 prior to applying to p2. But then j could not have been rejected by

p2 in the ADA-ETB under R subsequently given that j �p2 i2, contradicting µT (j)Pjp2.

Let t2 > t be the round of the ADA-ETB under R in which j is rejected by o in favor of

i2. By the above, we must have µt2(i1) = p2. But then, i2 would have been rejected by o

in favor of j since {i1, j} �p2 i2. In particular, µT (j) = p1, which contradicts p2Pjµ
T (j).

Hence, we must have j /∈ J .
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Since j /∈ J , there must be a round t1 < t′ of the ADA-ETB under R̃ in which j is rejected

by p1. It is easy to see that we must have p1 = o, as otherwise νt
′
(i1) = νt

′
(i2) = o

is impossible. Since j is rejected by o prior to round t′ and i1 ∼o i2, we must have

i1 ∼o i2 ∼o j given that � is an IB environment. Since i1 was rejected by o under R

when all three agents applied to o, it has to be the case that i1 < i2 and i1 < j, as well as

{i2, j} �′o i1. Let t2 < t′ be the round of the ADA-ETB in which j is rejected by o under

R̃, let q1 := νt2(i1) and q2 := νt2(i2). If q1 = o, {i1, i2} �q2 j as otherwise i1 would have

been rejected by o in favor of j in round t2 given the above. But then i2 could not have

applied to o subsequently, contradicting νt
′
(i2) = o. If q2 = o, {i1, i2} �q1 j as otherwise

i1 would have been rejected by o in round t2 in favor of j. But then i1 could not have

applied to o subsequently, contradicting νt
′
(i1) = o. Since we must have either q1 = o or

q2 = o given that j is rejected by o in round t2 of the ADA-ETB under R̃, this shows that

{i1, j} �p2 i2 is impossible.

Case 2.2: {i2, j} �p1 i1
Assume first that p2Pjp1. This is possible only if p2 = o: agent j must have been rejected

by p2 prior to round t of the ADA-ETB under R. If p2 6= o, this is possible only if either

i1 or i2 is assigned to p2 at this point. But then either i1 or i2 must be matched to p2

in round t of the ADA-ETB under R, a contradiction. Hence, we must have νt
′
(i1) =

νt
′
(i2) = νt

′
(j) = o. Since i2 is rejected by o in round t′ of the ADA-ETB under R̃, it

has to be the case that i2 < i1 and i2 < j, as well as {i1, j} �′o i1. This implies that it

cannot be that all three agents applied to o simultaneously in the ADA-ETB under R (as

otherwise i2 would have been rejected by o given that she is the minimal agent). If j was

rejected by o in favor of i2 in some round t1 < t of the ADA-ETB under R, we must have

µt1(i1) = p1, as otherwise i1 could not have subsequently applied to o (remember that

p1 6= o). Given that {j, i2} �p1 i1, the tie i2 ∼o j would have been broken in favor of the

higher indexed agent j in round t1, contradicting i2 ∈ µt(o). If j was rejected by o in favor

of i1 in some round t2 < t of the ADA-ETB under R, i2 must have been subsequently

rejected by µt2(i2) given that i2 ∈ µt(o). But this is possible only if µt2(i2) = p1. We

obtain a contradiction since {i2, j} �p1 i1 implies that i1 would have been rejected by o in

favor of j in round t2, a contradiction.

Hence, we are left to consider the case of p1Pjp2. Since i1 is rejected by o in favor of i2 in

the ADA-ETB under R and j �p1 i1, we must have µT (j) = p1. This implies j /∈ J so that

R̃j = Rj . Since νt
′
(j) = p2, j must have been rejected by p1 in favor of i2 in some round

t1 < t′ of the ADA-ETB under R̃ and it has to be the case that i2 �p1 j �p1 i1. But then

i2 could not have applied to o subsequently in the ADA-ETB under R̃. This contradicts

νt
′
(i2) = o and completes the proof.

B.3 Proof of Theorem 5

Necessity

In the following, we show that if one of the conditions is violated, the ADA fails to choose a

constrained efficient matching for at least one problem. Note that the restriction to the ADA is
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without loss of generality since it is the unique constrained efficient mechanism for strict priority

structures.

If one of the necessary conditions for the solvability of a weak priority structure is violated,

strategy-proofness of the ADA for strict priority structures implies that the priority structure

is not solvable by exogenous tie-breaking. We now consider the remaining cases one by one.

Suppose first, there is a weak priority reversal (i1, i2, j1, o, p1, p2). Consider an arbitrary strict

transformation �′ of �. Given symmetry, we can assume w.l.o.g. that i1 �′o i2 (in the other

case one just needs to exchange the roles of i1, i2 and p1, p2). In the following we will always

assume that all agents in I \{i1, i2, j1} rank o and p2 as unacceptable. If i1 �′o i2 �′o j1, consider

a preference profile R1 such that R1
i1

= p2, o, R
1
i2

= o, and R1
j1

= o, p2. In this case we obtain

ADA�
′

i1
(R1) = o and ADA�

′

j1
(R1) = p2 so that i1 and j1 form a stable improvement cycle. Next,

suppose that j1 �′o i1 �′o i2 and consider a preference profile R2 such that R2
i1

= o, R2
i2

= o, p2,

and R2
j1

= p2, o. In this case we obtain ADA�
′

i2
(R2) = p2 and ADA�

′

j1
(R2) = o so that i2 and j1

form a stable improvement cycle. Finally, assume that i1 �′o j1 �′o i2 and consider a preference

profile R3 with R3
i1

= p2, o, R
3
i2

= o, p2, and R3
j1

= o. In this case we obtain ADA�
′

i1
(R3) = o

and ADA�
′

i2
(R3) = p2 so that i1 and i2 form a stable improvement cycle.

Next, suppose there is a weakly cyclic tie i1 ∼o i2, that is not strongly cyclic. Let agent j and the

two distinct objects p1, p2 be such that i1 �p1 j �o i1 and i2 �p2 j �o i2. Given symmetry, we

can assume w.l.o.g. that i1 �′o i2. Consider a preference profile R such that Ri1 = o, Ri2 = o, p2,

and Rj = p2, o. Suppose that all agents in I \ {i1, i2, j} rank objects o and p2 as unacceptable.

For this profile we obtain ADA�
′

i2
(R) = p2 and ADA�

′

j (R) = o so that i2 and j form a stable

improvement cycle. This completes the proof of necessity.

Sufficiency

Note first that strong acyclicity and the absence of weak priority reversals imply that � is

solvable by Theorem 2. Furthermore, note also that the connectedness of I implies that �
cannot be a HET environment in this case, since every agent in I must be an owner and |I| ≥ 3.

Now let �′ be the weak priority structure after the exogenous tie-breaking stage. If �′ is strict,

the solvability of � by exogenous tie-breaking follows from Theorem 3. Now suppose there is a

pair of distinct agents i1, i2 such that i1 ∼′o i2 for some object o. By Lemma 3, there is a unique

agent ji1,i2 ∈ I \ {i1, i2} such that i1 �p1 ji1,i2 �p1 i2 and i2 �p2 ji1,i2 �p2 i1 for two distinct

objects p1, p2. If ji1,i2 ∼o i1, we obtain a weak priority reversal. If ji1,i2 �o i1, we obtain a

weakly cyclic tie. Since � is an IB environment, these are the only possible cases and we thus

obtain a contradiction.

We now provide a characterization of IB environments with |I| = 3 that are solvable by exogenous

tie-breaking.

Theorem 7. Suppose � is an IB environment with |I| = 3 that is not strict.

Then � is solvable by exogenous tie-breaking if and only if

(a) |L1| = 2, and

(b) there is exactly one agent in L1 who has third highest priority for one of the objects.

Proof: The sufficiency of these conditions follows immediately from Theorem 3 and the rules for

exogenous tie-breaking. We now show how to extend the necessity result of Theorem 5 to this case.
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Suppose first that L1 = I = {i1, i2, i3} and that i1 ∼o i2 for some object o. Since there exist

two objects p1, p2 such that i1 = r1(�p1) and i2 = r1(�p2), the tie i1 ∼o i2 would be weakly cyclic if

i3 �o i1. Since the above implies that � is not solvable by exogenous tie-breaking in this case, we must

have i3 ∼o i1 as well. Now let p3 be some object such that i3 = r1(�p3). Since for all j ∈ {1, 2, 3} a tie

below the top of �pj would be weakly cyclic, �pj has to be strict for all j ∈ {1, 2, 3}. Given symmetry,

we can assume w.l.o.g. that i1 �p1 i2 �p1 i3. Since, as demonstrated above, � cannot contain weak

priority reversals if it is solvable by exogenous tie-breaking, we must have i3 �p3 i1 �p3 i2. But then

the absence of weak priority reversals requires that i2 �p2 i3 �p2 i1. Now suppose that contrary to

what we want to show, � is solvable by the strict priority structure �′. Since i1 �p1 i2 �p1 i3 and

i1 ∼o i2 ∼o i3, the tie-breaking lemma implies that we must have i1 �′o i3. Since �′ is assumed

strict, we must have i1 �′o i3. Since i3 �p3 i1 �p3 i2 and i1 ∼o i2 ∼o i3, the tie-breaking lemma

similarly implies that we must have i3 �′o i2. Hence, by transitivity, i1 �′o i2. But then we obtain a

contradiction to the tie-breaking lemma: since i2 �p2 i3 �p2 i1 and i1 ∼o i2 ∼o i3, the tie at o has to

be broken in favor of i2 at the profile Ri1 = o, Ri2 = o, Ri3 = p2, a contradiction.

Now suppose that L1 = {i1, i2} and L2 = {i3}, but that there exist p1, p2 such that i1 �p1 i3 �p1 i2
and i2 �p2 i3 �p2 i1. As shown above, solvability by exogenous tie-breaking requires the absence of

weakly cyclic ties. It is easy to see that if � is not strict, there has to exist an object o such that

i1 ∼o i2 ∼o i3. But in this case we obtain a weak priority reversal, so that � cannot be solvable by

exogenous tie-breaking.
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