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Abstract

Single-peaked preferences have played an important role in the liter-
ature ever since they were used by Black (1948) to formulate a do-
main restriction that is sufficient for the exclusion of cycles according
to the majority rule. In this paper, we approach single-peakedness
from a choice-theoretic perspective. We show that the well-known
axiom independence of irrelevant alternatives (a form of contraction
consistency) and a weak continuity requirement characterize a class
of single-peaked choice functions. Moreover, we examine the ratio-
nalizability and the rationalizability-representability of these choice
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1 Introduction

Single-peaked preferences have played an important role in the literature ever
since they were used by Black (1948) to formulate a domain restriction that
is sufficient for the exclusion of cycles according to the majority rule; see also
Inada (1969) and Sen (1970) for early contributions that employ domain as-
sumptions of that nature. An example for more recent applications is the area
devoted to the study of strategy-proofness, where this restriction on prefer-
ences has proven to allow for several classes of possible collective choice rules
in one-dimensional policy spaces; see, for example, Moulin (1980), Sprumont
(1991), Barberà, Gul and Stacchetti (1993), Barberà and Jackson (1994),
Ehlers and Storcken (2002), and Dutta, Peters and Sen (2003), to name but a
few. Single-peakedness (or more specific notions such as spatial or Euclidean

preferences) can be defined in higher dimensions as well; see, for instance, Le
Breton and Weymark (2006) for a detailed discussion. They arise naturally
in many economic models, e.g. by maximizing a strongly quasi-concave utility
function on a linear budget set in consumer theory. Ballester and Haeringer
(2006) provide a characterization of (one-dimensional) single-peaked prefer-
ence profiles. They examine the question under what conditions there exists
a single ranking of the alternatives such that all preferences within the profile
are single-peaked with respect to this ranking.

In this paper, we approach single-peakedness from a choice-theoretic per-
spective. The universal set of alternatives is represented by a Euclidean space
(of fixed but arbitrary dimension), and a choice function assigns a unique cho-
sen alternative to each feasible set within the domain of this function. We
assume that the domain consists of all non-empty, compact and convex sub-
sets of the Euclidean space, an assumption that is standard in the context of
choice in economic environments. Moreover, we examine the rationalizability
and the rationalizability-representability of these choice functions.

Unlike Ballester and Haeringer (2006), we consider a single choice func-
tion of a single decision maker and we show that the conjunction of the
well-known axiom independence of irrelevant alternatives (IIA: a form of
contraction consistency introduced by Nash, 1950, in the context of bargain-
ing problems) and a weak continuity requirement characterizes a class of
single-peaked choice functions. Moulin (1984) examines social choice func-
tions defined on a domain involving single-peaked preference profiles that
satisfy suitably formulated versions of independence properties. As a by-
product of his analysis he obtains a characterization of single-peaked choice
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from closed intervals within [0, 1] based on IIA and continuity (see Remark
1 in Moulin, 1984). This is closely related to our results, applied to the
one-dimensional case.

Our notion of single-peaked choice is based on the following idea. Con-
sider two distinct points x and y and suppose x is the choice from some feasi-
ble set also containing y. Now consider a point w on the half-line starting at x
and passing through y and a point v in the interval [x, w]. Single-peakedness
demands that v is chosen from the interval [v, w]. This requirement is moti-
vated by the observation that if a point x is chosen over another point y and
all points on the line segment joining the two are feasible (which is implied by
the convexity assumption), then the choice from an interval included in this
line segment should be the point closest to x. Moreover (with some abuse of
language) single-peakedness requires that there is at most one ‘peak,’ that is,
a point that is always chosen when it is feasible and for all feasible sets exclud-
ing the peak, a boundary point must be chosen. This definition specializes
to the rationalizability of the choice function by a single-peaked preference
relation in the one-dimensional case.

Rationalizability means that the choice function can be represented by a
transitive binary relation. By constructing a specific class of single-peaked
choice functions we show that for any n ≥ 3 there are choice functions with
exactly one peak that have no revealed preference cycles of length n but
that do have such cycles of length n + 1. The construction involves classical
geometric arguments. The situation is somewhat better for single-peaked
choice functions without a peak – i.e., with an ‘infinite’ peak. In the two-
dimensional case without a peak, acyclicity of the revealed preference relation
is implied by independence of irrelevant alternatives and our weak continuity
assumption. Our results on representability state that under the assumptions
of acyclicity and (strong) continuity a representing strongly quasi-concave
utility function exists.

In the next section, we introduce our basic definitions. Section 3 contains
our characterization result for single-peaked choice functions. In Section
4, we examine the rationalizability of these choice functions, and Section 5
provides results regarding the existence of real-valued representations of such
rationalizations. A brief concluding section summarizes.
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2 Preliminaries

We consider choices from sets of k-dimensional vectors, where k ∈ N is
arbitrary but fixed. For a non-empty set C ⊆ Rk, conv(C) denotes the
convex hull of C, and bd(C) denotes the (topological) boundary of C. If
C = {x, y} for some x, y ∈ Rk, we also write [x, y] instead of conv(C) and
refer to this set as an interval. The (relatively) open or half-open sets (x, y],
[x, y), and (x, y) are defined in the obvious way. For distinct x, y ∈ Rk,
[x, y,→) denotes the half-line through y starting at x and ℓ(x, y) denotes the
straight line through x and y. The convergence of a sequence of subsets of
Rk is defined in terms of the Hausdorff metric.

For a (binary) relation R ⊆ Rk ×Rk, we use P to denote the asymmetric

factor of R, that is, xPy if and only if xRy and ¬yRx for all x, y ∈ Rk. A
relation R on Rk is: (i) reflexive if xRx for all x ∈ Rk; (ii) complete if xRy
or yRx for all x, y ∈ Rk such that x 6= y; (iii) transitive if [xRy and yRz]
implies xRz for all x, y, z ∈ Rk; (iv) antisymmetric if [xRy and yRx] implies
x = y for all x, y ∈ Rk; (v) acyclic if there exist no m ∈ N \ {1, 2} and
x1, . . . , xm such that xiPxi+1 for all i ∈ {1, . . . , m}, where xm+1 := x1.

The set of all non-empty, compact and convex subsets of Rk is denoted
by C. A choice function is a mapping ϕ: C → Rk such that ϕ(C) ∈ C for all
C ∈ C. In particular, this means that ϕ is single-valued and is defined for
every non-empty, compact and convex subset of C, including single points.
A choice function ϕ on C induces a relation Rϕ on Rk defined by

xRϕy :⇔ ∃C ∈ C such that y ∈ C and ϕ(C) = x

for all x, y ∈ Rk. The relation Rϕ is called the direct revealed preference rela-

tion corresponding to the choice function ϕ. Due to our domain assumption
(in particular, because {x} ∈ C for all x ∈ Rk), Rϕ is reflexive. The (indirect)
revealed preference relation Rϕ corresponding to ϕ is the transitive closure
of Rϕ, that is,

xRϕy :⇔ ∃m ∈ N \ {1} and x1, . . . , xm ∈ Rk such that

x = x1, xiRxi+1 ∀i ∈ {1, . . . , m − 1} and xm = y

for all x, y ∈ Rk.
The following properties of a choice function ϕ: C → Rk are of importance

in this paper.
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Independence of Irrelevant Alternatives (IIA). For all C, D ∈ C,

C ⊆ D and ϕ(D) ∈ C ⇒ ϕ(C) = ϕ(D).

IIA is the standard contraction-independence property for single-valued choice
functions; see Nash (1950) for its application in a bargaining framework.

Continuity (CON). For all C ∈ C and for all sequences 〈Ci〉i∈N with Ci ∈ C
for all i ∈ N,

lim
i→∞

Ci = C ⇒ lim
i→∞

ϕ(Ci) = ϕ(C).

For our purposes, the following weaker version of continuity is of interest. In
this weakening the continuity axiom applies to intervals along the same line
only.

Collinear Interval Continuity (CIC). For all distinct x, y ∈ Rk and for
all sequences 〈xi〉i∈N and 〈yi〉i∈N with xi, yi ∈ ℓ(x, y) for all i ∈ N ,

lim
i→∞

xi = x and lim
i→∞

yi = y ⇒ lim
i→∞

ϕ([xi, yi]) = ϕ([x, y]).

If ϕ satisfies IIA, then xRϕy implies ¬yRϕx for all x, y ∈ Rk such that x 6= y:
this is so since, under IIA, xRϕy is equivalent to ϕ([x, y]) = x. Thus, if ϕ
satisfies IIA, then the direct revealed preference relation Rϕ is antisymmetric.

We conclude this section with definitions of the well-known notions of
rationalizability and representability of a choice function, formulated for our
specific environment. A choice function ϕ: C → Rk is rationalizable if there
exists a transitive relation R on Rk such that

{ϕ(C)} = {x ∈ C | xRy ∀y ∈ C}

for all C ∈ C.1 A choice function ϕ is rationalizable-representable if there
exist a transitive relation R on Rk and a function u: Rk → R such that R
rationalizes ϕ and

[xRy ⇒ u(x) ≥ u(y)] and [xPy ⇒ u(x) > u(y)]

for all x, y ∈ Rk. A function u: Rk → R is strongly quasi-concave if, for
all x, z, z′ ∈ Rk with z 6= z′ and u(z), u(z′) ≥ u(x) and for all 0 < α < 1,
αz + (1 − α)z′ is an interior point of the set {y ∈ Rk | u(y) ≥ u(x)}. In
other words, u is strongly quasi-concave if its so-called upper contour sets
are strictly convex.

1Requiring the rationalizing relation to be reflexive, complete and transitive leads to
an equivalent formulation of rationalizability; see Richter (1966, 1971).
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3 Single-peaked choice functions

A choice function ϕ is single-peaked if

(I) for all x, y ∈ Rk such that x 6= y and xRϕy, for all w ∈ [x, y,→)
and for all v ∈ [x, w], ϕ([v, w]) = v

and either

(II.a) there exists p ∈ Rk such that ϕ(C) = p for all C ∈ C with
p ∈ C and ϕ(C) ∈ bd(C) for all C ∈ C with p 6∈ C

or

(II.b) ϕ(C) ∈ bd(C) for all C ∈ C.

If case (II.a) applies, the point p is called a peak of ϕ. Clearly, a single-peaked
choice function has either one peak or none.

For k = 1, this definition reduces to rationalizability by single-peaked
preferences: if there is a peak p ∈ R, define the relation R by letting

xRy :⇔ |x − p| ≤ |y − p|

for all x, y ∈ R; if there is no peak, let either

xRy :⇔ x ≤ y

for all x, y ∈ R or
xRy :⇔ x ≥ y

for all x, y ∈ R, whichever case applies. Moreover, rationalizability-represent-
ability is guaranteed: for the three possibilities illustrated above, the corre-
sponding utility function u: R → R can be defined by

u(x) = −|x − p|

for all x ∈ R or
u(x) = −x

for all x ∈ R or
u(x) = x

for all x ∈ R, respectively.2

Single-peaked choice functions are characterized by IIA and CIC, as es-
tablished in the following theorem.

2As mentioned in the Introduction, a similar result was derived in Moulin (1984) for
choice functions defined on subsets of a closed interval. See in particular his Remark 1.
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Theorem 3.1 Let k ∈ N. A choice function ϕ: C → Rk satisfies IIA and

CIC if and only if ϕ is single-peaked.

Proof. ‘If.’ Suppose ϕ is single-peaked.
To establish IIA, suppose that C, D ∈ C with C ⊆ D and ϕ(D) ∈ C.
Case (i): There exists a peak p and p ∈ C. This implies p ∈ D because

C ⊆ D. By the definition of single-peaked choice, it follows that ϕ(C) =
ϕ(D) = p.

Case (ii): There exists no peak or there exists a peak p and p 6∈ C. If there
exists a peak p and p ∈ D, it follows that p = ϕ(D) ∈ C, a contradiction.
Thus, if a peak p exists, it cannot be in D either. Suppose ϕ(C) 6= ϕ(D).
Because C ⊆ D, it follows that ϕ(C) ∈ D and thus ϕ(D)Rϕϕ(C). Letting
x = v = ϕ(D) and y = w = ϕ(C) in part (I) of the definition of single-
peakedness, we obtain

ϕ([ϕ(C), ϕ(D)]) = ϕ(D). (1)

Moreover, because ϕ(D) ∈ C by assumption, we have ϕ(C)Rϕϕ(D), and
interchanging the roles of ϕ(C) and ϕ(D) in the previous argument yields
ϕ([ϕ(C), ϕ(D)]) = ϕ(C). Together with (1), this contradicts our hypothesis
ϕ(C) 6= ϕ(D).

To prove that CIC is satisfied, let x, y be distinct elements of Rk and
consider sequences 〈xi〉i∈N and 〈yi〉i∈N with xi, yi ∈ ℓ(x, y) for all i ∈ N,
and with limi→∞ xi = x and limi→∞ yi = y. Without loss of generality,
limi→∞ ϕ([xi, yi]) exists, and we have to prove that it is equal to ϕ([x, y]). To
the contrary, suppose that v := ϕ([x, y]) 6= limi→∞ ϕ([xi, yi]) =: w ∈ [x, y].
By (I), vRϕw and in particular (without loss of generality) ϕ([xi, yi]) 6= v
and vRϕϕ([xi, yi]) for all i. If w ∈ (x, y) then we can choose i such that
ϕ([xi, yi]) ∈ (xi, yi), so that ϕ([xi, yi])Rϕxi and ϕ([xi, yi])Rϕyi, and hence
by (I), we obtain ϕ([xi, yi])Rϕv, a contradiction. If w /∈ (x, y) then without
loss of generality w = y; then v ∈ [x, y) and we can choose i such that
ϕ([xi, yi]) ∈ (v, yi], so that ϕ([xi, yi])Rϕv by (I), again a contradiction.

‘Only if.’ Suppose ϕ satisfies IIA and CIC. To establish part (I) of single-
peakedness, let xRϕy (hence ϕ([x, y]) = x by IIA), x 6= y, w ∈ [x, y,→) and
v ∈ [x, w]. Suppose, contrary to what we wish to show, that ϕ([v, w]) ∈
(v, w]. We distinguish two cases.

Case (i): w ∈ [x, y]. In this case, let v̄ be the point in [x, v] closest to
x for which ϕ([v̄, w]) = ϕ([v, w]); this point exists because of CIC. Suppose
v̄ 6= x. Then, for ¯̄v ∈ [x, v̄) close enough to v̄, we have ϕ([¯̄v, w]) = ϕ([v, w])
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by CIC and IIA, contradicting the definition of v̄. Hence, v̄ = x. This implies
ϕ([x, w]) = ϕ([v̄, w]) = ϕ([v, w]) 6= x, a contradiction to IIA.

Case (ii): w /∈ [x, y]. In this case, by an argument similar to the first one
in case (i), we have ϕ([x, w]) = x. Since v ∈ [x, w], we are back in case (i)
by assuming y = w there.

To establish part (II) of single-peakedness, clearly, (II.a) and (II.b) cannot
both be true. Suppose (II.b) is not true. Then there is a C ∈ C such that
ϕ(C) is an interior point of C, say p. So pRϕx for all x ∈ C. Let y ∈ Rk \C.
Since p is an interior point of C, there is an x ∈ C\{p} such that y ∈ [p, x,→).
By part (I), pRϕy. By IIA, ϕ(D) = p whenever p ∈ D. �

Single-peaked choice functions do not necessarily satisfy full continuity CON.
For instance, the single-peaked choice function picking the lexicographic max-
imum of a choice set in R2 does not satisfy CON (cf. also Example 5.1).

4 Rationalizability

If k = 1, IIA and CIC together guarantee rationalizability, as mentioned
earlier. However, matters are more complex in higher dimensions, even if
CIC is strengthened to CON.

Suppose k ≥ 2. As noted before, IIA implies that Rϕ is antisymmetric
and, thus, there are no cycles of length two in Rϕ. Conversely, the absence
of cycles of length two in Rϕ implies IIA. Thus, these two conditions are
equivalent. Although necessary, IIA (or, equivalently, the absence of cycles
of length two) is not sufficient for rationalizability unless specific domain as-
sumptions are made. What is sufficient on any domain is the strong axiom

of revealed preference which, in our setting, is equivalent to the requirement
that the revealed preference relation Rϕ be acyclic (or, equivalently, that the
revealed preference relation Rϕ be antisymmetric). This raises the question
whether IIA (possibly together with one of our continuity properties) is suffi-
cient to rule out cycles of arbitrary length on our domain, thus guaranteeing
rationalizability. More generally, we investigate whether ruling out cycles of
length n ∈ N or less is sufficient to rule out longer cycles for arbitrary n ≥ 2.
In answering this question, it turns out that we have to distinguish between
the two possibilities (II.a) and (II.b) in the definition of single-peakedness.
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4.1 Choice functions with a peak

In the following example we show that, for any n ∈ N with n ≥ 3, there is
a choice function with a peak (in the example the point 0), satisfying IIA
and CON, such that there are no cycles of length n (or smaller) but there
are cycles of length n + 1 (or larger). This implies that, without further
assumptions, there is no n such that the exclusion of n-cycles implies the
exclusion of all cycles, for a choice function satisfying IIA and CON.

Example 4.1 Let k = 2. Let α ∈ [0, π/2]. We are going to construct a
choice function ϕα. For C ∈ C with 0 ∈ C let ϕα(C) := 0. Now let C ∈ C
with 0 /∈ C.

For every β ∈ [0, 2π) let ℓβ be the half-line starting from the origin and
forming an angle of β radians with the positive horizontal axis. Then the
set B(C) := {β ∈ [0, 2π) | ℓβ ∩ C 6= ∅} is either of the form [β1, β2] with
0 ≤ β1 ≤ β2 < 2π or of the form [β1, 2π)∪ [0, β2] with 0 ≤ β2 < β1 < 2π. For
every β ∈ B(C) let xβ be the point in C ∩ ℓβ closest to the origin. We define
the correspondence c: B(C) → [0, π/2] as follows: for every β ∈ B(C), c(β)
is the interval of the non-obtuse angles (in radians) between ℓβ and those
supporting lines of the set C at the point xβ that (weakly) separate C from
the origin. Then 0 ∈ c(β1) and 0 ∈ c(β2). There is a unique value of β with
π/2 ∈ c(β), namely the value of β such that xβ is the point of C with minimal
Euclidean distance to the origin. The correspondence c strictly increases from
β1 to this value, and then strictly decreases again to β2. In particular, there
are at most two different values of β such that α ∈ c(β). Let these values be
β ′ and β ′′ such that β ′ mod β1 ≤ β ′′ mod β1, then ϕα(C) := xβ′.

In other words, if C contains the origin then ϕα chooses the origin. Oth-
erwise, ϕα chooses a point from the boundary of C such that there is a
supporting line of C at this point that forms an angle of α radians with
the line through this point and the origin. The chosen point is always the
point on the latter line closest to the origin, and in case there are two such
points, on different lines through the origin, then ϕα takes the first one going
counter clockwise. For instance, for α = π/2, ϕα(C) is the point of C closest
to the origin. For α = 0, it takes the point of C closest to the origin on
the first supporting line of C passing through the origin when going counter
clockwise. See Fig. 1.

For every α ∈ [0, π/2], the choice function ϕα is well-defined and satisfies
IIA. For every α ∈ (0, π/2], ϕα satisfies CON, but for α = 0 it does not. �
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π/2
x

α
y

z

C

Figure 1: Illustration of the set of choice functions defined in Example 4.1.
The choice set is the shaded set C, and x = ϕπ/2(C), y = ϕα(C) for some
value α between 0 and π/2, and z = ϕ0(C).

We will prove a theorem which implies our earlier claim: that, for every
n ≥ 3, there is a choice function satisfying IIA and CON which has no cycles
of length n or smaller, but which has cycles of length n + 1 or larger. In the
proof, we make use of the following result which is proven in Appendix A.
For every n ∈ N with n ≥ 2, define

A(n) =
n − 2

2n
π .

The number A(n) is equal to half the angle at a vertex in a regular n-polygon.

Theorem 4.2 Let k = 2, let P be a convex n-polygon with vertices x1, . . . , xn

and let x̂ be a point of P such that ∡x̂x1x2 = ∡x̂x2x3 = . . . = ∡x̂xn−1xn =:
α < π/2 and ∡x̂xnx1 ≥ α. Then α ≤ A(n).

The main result of this subsection is the following theorem.

Theorem 4.3 Let k = 2, let α ∈ (0, π/2) and let n ∈ N \ {1} be such that

A(n) < α ≤ A(n + 1). Then Rϕα has no cycle of length n but it does have a

cycle of length n + 1.

Proof. We first exhibit an (n + 1)-cycle for Rϕα , and then show that there
are no smaller cycles.
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To exhibit an (n + 1)-cycle, take a regular (n + 1)-polygon with 0 as
center. Let x1, . . . , xn+1 be the successive vertices of this polygon. Since
∡0x1x2 = A(n + 1) ≥ α, it follows that ϕα([x1, x2]) = x1 by definition of ϕα,
hence x1Rϕαx2. This argument can be repeated for any successive pair of
vertices, so that x1Rϕαx2Rϕα . . . Rϕαxn+1Rϕαx1. So Rϕα has an (n+1)-cycle.

Next, we show that there are no smaller cycles. It is sufficient to show
that there are no cycles of length n. Suppose, to the contrary, that there is
such a cycle

x1Rϕαx2Rϕα . . . RϕαxnRϕαx1 .

Obviously, 0 is not an element of this cycle since it is the peak of ϕα. Fur-
thermore, we may assume that for all i, j ∈ {1, . . . , n}, xiRϕαxj implies that
either i ≤ n and j = i + 1 or i = n and j = n + 1 since otherwise we would
have an even shorter cycle with . . . RϕαxiRϕαxjRϕα . . . by leaving out the
points between xi and xj in the original cycle.

Consider x1 and x2. Since x1Rϕαx2, x2 is a point separated from 0 by the
line ℓ1 passing through x1 and forming an angle of α radians with the line
through 0 and x1. Suppose x2 is not on ℓ1. Since x3 must be on the same
side of ℓ1 as 0, we can replace x2 by the unique point x′ in [x2, x3] ∩ ℓ1 and
still have x1Rϕαx′Rϕαx3. Hence, we can without loss of generality assume
that x2 is on ℓ1. There are two cases to consider, namely (i) ∡0x1x2 = α;
and (ii) ∡0x1x2 = π − α.

Case (i): Assume ∡0x1x2 = α and now consider x2 and x3. By repeating
the argument of the previous paragraph, we may assume that x3 is a point
on the line ℓ2 passing through x2 and forming an angle of α radians with the
line through 0 and x2. We must have ∡0x2x3 = α, since ∡0x2x3 = π − α
would imply that x3 would be separated from 0 by ℓ1 and, thus, x1Rϕαx3, a
contradiction. See Fig. 2(i) for the construction so far.

Repeating this argument up to and including the pair xn−1 and xn, we
have n − 1 lines ℓ1, . . . , ℓn−1, with, for each i = 1, . . . , n − 1, ℓi passing
through xi and xi+1 and such that each xj (j ∈ {1, . . . , n} \ {i, i + 1}) and
0 are on the same side of ℓi but not on ℓi. Moreover, ∡0xixi+1 = α for each
i = 1, . . . , n − 1. Hence, P := conv{x1, . . . , xn} is a convex n-polygon with
vertices x1, . . . , xn, containing 0 as an interior point, such that ∡0xixi+1 = α
for each i = 1, . . . , n − 1 and ∡0xnx1 ≥ α. The last inequality follows since
xnRϕαx1. (Observe that we cannot assume equality here: this might involve
having to replace x1 by a different point x′ but then ∡0x′x2 > α.) By
applying Theorem 4.2 to P, it follows that α ≤ A(n), a contradiction.
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Figure 2: Illustrations for the proof of Theorem 4.3

Case (ii): Assume ∡0x1x2 = π − α; see Fig. 2(ii). Since α < π/2, this
implies ||x2|| > ||x1|| (where || · || denotes the Euclidean norm). Since also
∡0x2x3 ≥ π − α (otherwise we would have x1Rϕαx3, a contradiction), we
have ||x3|| > ||x2||. Continuing this argument, we obtain ||x1|| < ||x2|| <
. . . < ||xn|| < ||x1||. This contradiction takes care of case (ii) and completes
the proof of the theorem. �

Intuitively it is clear that acyclicity of the revealed preference relation is even
harder to obtain for higher dimensions. One way to extend Example 4.1 and
Theorem 4.3 to k > 2 may be to ‘embed’ the choice function ϕα in higher
dimensions, similar to the construction in Peters and Wakker (1994).

4.2 Choice functions without a peak

If ϕ is a choice function such that ϕ(C) is on the boundary of C for every
feasible set C (as in case (II.b) in the definition of single-peakedness), the sit-
uation is different. The first observation is that, in this case, cycles of length
three cannot occur if k = 2. Moreover, this observation is a consequence of
IIA alone – no continuity requirement is needed.

Lemma 4.4 Let k = 2. If a choice function ϕ: C → Rk satisfies IIA and

ϕ(C) ∈ bd(C) for all C ∈ C, then Rϕ has no cycles of length three.
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Proof. Suppose, to the contrary, that x1, x2, x3 ∈ R2 are three different
points and x1Rϕx2Rϕx3Rϕx1. If these three points are not on the same line,
then ϕ(conv({x1, x2, x3})) must be a point on the boundary, i.e., in [x1, x2]
or in [x2, x3] or in [x3, x1]. In the first case, ϕ(conv({x1, x2, x3})) = x1 by
IIA, but then x1Rϕx3, a contradiction. The other two cases lead to similar
contradictions. If the three points are on the same line then an analogous
argument applies. �

The following theorem shows that adding CIC allows us to extend this result
to cycles of arbitrary length.

Theorem 4.5 Let k = 2. If a choice function ϕ: C → Rk satisfies IIA and

CIC and ϕ(C) ∈ bd(C) for all C ∈ C, then Rϕ is acyclic.

Proof. The proof proceeds by induction on the cycle length. By IIA, there
are no cycles of length two and by Lemma 4.4 there are no cycles of length
three. Let m ≥ 4 and assume as induction hypothesis that there are no
cycles of length smaller than m. Suppose that x1, . . . , xm are m different
points such that x1Rϕx2Rϕ . . . RϕxmRϕx1. Let C be the convex hull of these
m points, and let x := ϕ(C). Then x ∈ bd(C), and by IIA, there are xi and
xk with i, k ∈ {1, . . . , m} and k /∈ {(i − 1) mod m, i, (i + 1) mod m} such
that x ∈ (xi, xk) and (xi, xk)∩{x1, . . . , xm} = ∅. We now consider four cases
concerning the location of xi+1. (For simplicity of notation we write i + 1
and i − 1 instead of (i + 1) mod m and (i − 1) mod m.) See Fig. 3, where
these four cases are illustrated.

Case (i): xi+1 is a point on the line through xi and xk. In this case
xi+1 ∈ [x, xi,→), and in particular xi ∈ [x, xi+1], since otherwise xkRϕxi+1 by
Theorem 3.1, a contradiction. Then for every point y ∈ [xi−1, xi+1]∪ [xi+1, xi]
we have [x, y] ∩ [xi−1, xi] 6= ∅, hence, by Theorem 3.1, if ŷ is the point of
intersection then ŷRϕy. This implies that ϕ(conv({xi−1, xi, xi+1})) must be
a point of [xi−1, xi], and hence, by IIA, ϕ(conv({xi−1, xi, xi+1})) = xi−1. This,
however, implies xi−1Rϕxi+1, so that we obtain a cycle of length (m − 1) by
dropping the point xi from the original cycle of length m. This contradicts
the induction hypothesis.

Case (ii): xi+1 is not a point on the line through xi and xk, and the
half-line [xi, xi+1,→) is in the convex hull of the half-lines [xi, x,→) and
[xi, xi−1,→). (Observe that xi /∈ [x, xi−1] since otherwise xiRϕxi−1 by Theo-
rem 3.1, a contradiction.) In this case, consider a half-line ℓ starting from x
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Figure 3: The four cases in the proof of Theorem 4.5

and intersecting the segments [x, xi+1] and [x, xi−1] in points z and z′, respec-
tively. Then zRϕz′ by Theorem 3.1, z′Rϕxi by Theorem 3.1 since xi−1Rϕxi,
and xiRϕz by Theorem 3.1 since xiRϕxi+1. Hence, we have a cycle of length
three, which is a contradiction to Lemma 4.4.

Case (iii): xi+1 is not a point on the line through xi and xk, and the
half-line [xi, xi−1,→) is in the convex hull of the half-lines [xi, x,→) and
[xi, xi+1,→); and xi+1 is separated from xk by the line through x and xi−1.
(Observe that xi−1 /∈ [x, xk,→) since otherwise xi−1Rϕxk by Theorem 3.1, a
contradiction.) The proof for this case is identical to the proof of case (i).

Case (iv): xi+1 is not a point on the line through xi and xk, and the
half-line [xi, xi−1,→) is in the convex hull of the half-lines [xi, x,→) and
[xi, xi+1,→); and xi+1 and xk are on the same side of the line through x and
xi−1. To deal with this case, let v be the point of intersection of [xi, xi+1] and
[x, xi−1,→). By Theorem 3.1, vRϕxi+1. Consider the point xi−2 (recall that
m ≥ 4). Since for any point y ∈ [xi−1, v] ∪ [v, xi−2] the line segment [x, y]
intersects the line segment [xi−2, xi−1] in some point ŷ, Theorem 3.1 implies
ŷRϕy for any such point y. Hence ϕ(conv({xi−2, xi−1, v})) ∈ [xi−2, xi−1],
and therefore IIA implies ϕ(conv({xi−2, xi−1, v})) = xi−2. We now have
. . . Rϕxi−2RϕvRϕxi+1Rϕ . . ., hence a cycle of length m−1. This contradiction
takes care of case (iv) and completes the proof of the proposition. �

Unfortunately, Theorem 4.5 does not extend to higher dimensions. This
can be shown by a modification of the extension of an example of Gale
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(1960) for consumer theory in Peters and Wakker (1991); see also Bossert
(1994). Peters and Wakker (1991) consider, for k = 3, the subset Σ ⊆ C,
consisting of all elements of C ∈ C that satisfy (i) x ≥ 0 for all x ∈ C;
(ii) y ∈ C for all x, y ∈ R3 with x ∈ C and 0 ≤ y ≤ x; and (iii) x > 0
for all x ∈ PO(C). Here, PO(C) := {x ∈ C | ∀y ∈ C, y ≥ x ⇒ y = x}
is the Pareto optimal subset of C.3 Then a choice function ϕ: Σ → R3 is
constructed that satisfies IIA and is continuous (and Pareto optimal), but
admits a cycle of length four. It can be verified that this construction is
invariant under a translation over a vector with equal coordinates. More
precisely, let 1 := (1, 1, 1) ∈ R3. Then, for any sets C, C ′ ∈ Σ such that
there is a number α ∈ R with PO(C) = {x+α1 | x ∈ PO(C ′)}, it holds that
ϕ(C) = ϕ(C ′)+α1. Therefore, ϕ can be extended to all of C while preserving
IIA and CON as follows. For any set C ′ ∈ C, take a number α ∈ R such that
C := {x + α1 | x ∈ C ′} satisfies (i) and (iii) above, and extend this set C
to a set Ĉ := {x ∈ R3 | ∃y ∈ C such that 0 ≤ x ≤ y}. Then Ĉ ∈ Σ. Now
define ϕ(C ′) := ϕ(Ĉ) − α1.

5 Representability

As mentioned earlier, the one-dimensional case is special because rationaliza-
bility-representability is guaranteed; see the discussion in Section 3. Further-
more, the previous section has established that, in higher dimensions, IIA is,
in general, not sufficient for rationalizability even in the presence of CON.
Therefore, in order to obtain rationalizability-representability, we strengthen
IIA to the acyclicity of Rϕ – that is, the strong axiom of revealed preference.
In this case, Rϕ (or any of its extensions; see Szpilrajn, 1930, and Richter,
1966) can be used as a rationalization.

The continuity property CIC is not sufficient to guarantee the rationaliza-
bility-representability of ϕ if added to the acyclicity of Rϕ. This is established
in the following example.

Example 5.1 Let k = 2 and define the relation R on R2 by

xRy :⇔ [|x1| < |y1|] or [|x1| = |y1| and |x2| ≤ |y2|]

for all x, y ∈ R2. This is a single-peaked choice function with peak p = 0.
Now let, for all C ∈ C, ϕ(C) be the unique best element in C according

3Of course, in our context Pareto optimality has no special appeal.

15



to R. This choice function is well-defined because C is non-empty, compact
and convex. Thus, ϕ is rationalizable and Rϕ is equal to R and therefore
acyclic (which, of course, also implies IIA). CIC is satisfied but CON is not.
Because of the lexicographic nature of this example, ϕ is not rationalizable-
representable. �

To obtain a representation theorem, we assume below that Rϕ is acyclic and
ϕ satisfies CON. We first establish two preliminary results. For x ∈ Rk and
ε > 0, we use B(x, ε) to denote the open ε-ball around x, that is, the set of
points in Rk that have Euclidean distance smaller than ε to x.

Lemma 5.2 Let k ≥ 2, let x, z ∈ Rk be such that x 6= z and zRϕx and let

y ∈ [z, x,→) \ [z, x]. If a choice function ϕ: C → Rk satisfies IIA and CON,

then there is an ε > 0 such that xRϕv for all v ∈ B(y, ε).

Proof. By CON, there is a δ > 0 such that ϕ([w, x]) ∈ [w, x) for all w ∈
B(z, δ). By Theorem 3.1, xRϕv for all w ∈ B(z, δ) and v ∈ [w, x,→) \ [w, x].
We can choose ε > 0 sufficiently small so that, for each v ∈ B(y, ε), there is a
w ∈ B(z, δ) such that v ∈ [w, x,→) \ [w, x]. Then xRϕv for all v ∈ B(y, ε). �

Lemma 5.3 Let k ≥ 2 and let x, w ∈ Rk be such that x 6= w and xRϕw.

If a choice function ϕ: C → Rk satisfies IIA and CON, then there is an

a ∈ Qk \ {x, w} such that xRϕaRϕw.

Proof. By CON, there is a δ > 0 such that ||ϕ([v, w])−x|| < ||x−w||/3 for
all v ∈ B(x, δ).

If there is no z ∈ Rk \ {x} with zRϕx, then x is a peak of ϕ and we
choose y ∈ B(x, δ) arbitrarily. Otherwise, let z ∈ Rk \ {x} with zRϕx and
choose y ∈ B(x, δ) ∩ [z, x,→) \ [z, x]. By Lemma 5.2, we can choose ε > 0
such that B(y, ε) ⊆ B(x, δ) and xRϕv for all v ∈ B(y, ε). Since the set
{[v, w] ∈ Rk | v ∈ B(y, ε)} has full dimension, we can take a v̄ ∈ B(y, ε) such
that [v̄, w] contains a point a ∈ Qk \ {w} with ||a − w|| < ||x − w||/3. Since
||ϕ([v̄, w])−x|| < ||x−w||/3 and ||a−w|| < ||x−w||/3, Theorem 3.1 implies
ϕ([v̄, w])Rϕa and aRϕw. Since v̄ ∈ B(x, δ), xRϕϕ([v̄, w]). So xRϕaRϕw. �

We now obtain our representation result.

Theorem 5.4 Let k ≥ 2. If a choice function ϕ: C → Rk satisfies CON and

is such that Rϕ is acyclic, then ϕ is rationalizable-representable.
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Proof. The acyclicity of Rϕ implies that ϕ is rationalizable and Rϕ is a
rationalization of ϕ. We complete the proof by establishing the existence of
a representation u of Rϕ.

Lemma 5.3 straightforwardly implies

x 6= y and xR̄ϕy ⇒ ∃a ∈ Qk \ {x, y} such that xRϕaRϕy (2)

for all x, y ∈ Rk. Let Qk = {a1, a2, . . .} be an enumeration of the (countable)
set Qk. Define u: Rk → R by

u(x) =
∑

k∈N | xRϕak

2−k

for all x ∈ Rk. By (2) and the antisymmetry and transitivity of Rϕ, u
represents Rϕ.4 �

The reason why CIC is sufficient for a representation result in the one-
dimensional case but not for higher dimensions is quite intuitive. In the
one-dimensional case, variations along a straight line are sufficient to span a
full-dimensional neighborhood of a point but, of course, this is not the case
in higher dimensions.

A property that is often associated with generalizations of single-peaked
preferences to higher dimensions is strong quasi-concavity. Our final theorem
establishes that if a representation of Rϕ exists and CON is satisfied (IIA of
course follows), then this function is strongly quasi-concave.

Theorem 5.5 Let k ≥ 2. If a choice function ϕ: C → Rk satisfies CON and

a function u: Rk → R represents Rϕ, then u is strongly quasi-concave.

Proof. Let x ∈ Rk and let T := {y ∈ Rk | u(y) ≥ u(x)}. Let z, z′ ∈ T with
z 6= z′, 0 < α < 1 and z′′ := αz + (1 − α)z′. By Theorem 3.1, z′′Rϕz or
z′′Rϕz′. Hence u(z′′) ≥ u(x), so that z′′ ∈ T . This shows that T is convex.
If [z, z′] contains an interior point of T , then by convexity of T all points
of (z, z′) are interior. Now suppose that [z, z′] contains no interior point of
T . Let y := ϕ([z, z′]) where, without loss of generality, y 6= z. By CON,
there is an ε > 0 small enough such that ||ϕ([v, z]) − y|| ≤ ||z − y||/4 for all
v ∈ B(y, ε). Let y′ := y/4 + 3z/4. Take δ > 0 such that for all w ∈ B(y′, δ)
there is a point v ∈ B(y, ε) with w ∈ [v, z]. Then Theorem 3.1 implies wRϕz
and therefore u(w) ≥ u(z) ≥ u(x) for all w ∈ B(y′, δ). Hence, B(y′, δ) ⊆ T ,
so that y′ is an interior point of T , a contradiction. �

4This argument, using (2), is a variation on Lemma II in Debreu (1954) for partial
orders. See also Jaffray (1975).
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6 Conclusion

Single-peaked preferences play an important role in the economics and pol-
itical-science literatures. In this paper, we have examined single-peakedness
from a choice-theoretic perspective, thus providing new insights on the foun-
dations of this notion. In particular, we have characterized a class of single-
peaked choice functions by contraction consistency (IIA) and a weak (col-
linear) continuity condition. For this class we have obtained detailed results
on rationalizability and representability. Our results appear to provide strong
support of the use of single-peakedness because the two axioms characterizing
single-peaked choice are widely accepted in the relevant literature.

A Appendix: Proof of Theorem 4.2

Let n ∈ N with n ≥ 3 and consider a convex n-polygon P in R2 with
consecutive vertices x1, . . . , xn. This means that P is the convex hull of
{x1, . . . , xn}, every xi is an extreme point, and the boundary is the union of
the line segments [xi, xi+1] for i = 1, . . . , n with xn+1 := x1. A point x̂ ∈ P is
called a Brocard point 5 if ∡x̂x1x2 = ∡x̂x2x3 = . . . = ∡x̂xn−1xn = ∡x̂xnx1.
Denote this common angle size by αx̂.

Denote by O(C) the area of a set C in R2. For points x, y, z ∈ R2 denote
by △(xyz) the triangle with vertices x, y, and z. Recall that A(n) = n−2

2n
π

is equal to (1/2)∡x1x2x3 if P is a regular polygon.

Theorem A.1 Let x̂ be a Brocard point in P with common angle size αx̂.

Then

(i) cotαx̂ =

(

n
∑

i=1

||xi+1 − xi||2
)

/4 O(P);

(ii) αx̂ ≤ A(n).

Proof. For any triangle △(xyz) we have the familiar formula O(△(xyz)) =
(1/2)||y − x|| · ||z − x|| sin ∡yxz. Hence,

O(P) = O(△(x̂x1x2)) + O(△(x̂x2x3)) + . . . + O(△(x̂xnx1))

= (1/2)||x1 − x̂|| · ||x2 − x1|| sin∡x̂x1x2

5See Honsberger (1995) or Weisstein (2005).
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+(1/2)||x2 − x̂|| · ||x3 − x2|| sin∡x̂x2x3

+ . . . + (1/2)||xn − x̂|| · ||x1 − xn|| sin ∡x̂x1x2

= (1/2) sinαx̂

[

||x1 − x̂|| · ||x2 − x1|| + ||x2 − x̂|| · ||x3 − x2||

+ . . . + ||xn − x̂|| · ||x1 − xn||
]

hence

sin αx̂ =
2 O(P)

n
∑

i=1

||xi − x̂|| · ||xi+1 − xi||
. (3)

For any triangle △(xyz) we moreover have the familiar formula

cos ∡yxz =
||y − x||2 + ||z − x||2 − ||y − z||2

2||y − x|| · ||z − x||
.

Hence

cos αx̂ =
||xi+1 − xi||2 + ||x̂ − xi||2 − ||xi+1 − x̂||2

2||xi+1 − xi|| · ||x̂ − xi||

for all i ∈ {1, . . . , n}. By adding these expressions for all i = 1, . . . , n, we
obtain

cos αx̂ =

n
∑

i=1

||xi+1 − xi||2

2
n
∑

i=1

||xi − x̂|| · ||xi+1 − xi||
. (4)

Combining (3) and (4), we obtain

cot αx̂ =
cos αx̂

sin αx̂

=

(

n
∑

i=1

||xi+1 − xi||2

)

/4 O(P) ,

which proves (i).
For (ii), note that αx̂ is maximal if its cotangens value is minimal. Among

polygons of fixed circumference, a regular n-polygon minimizes the sum of
the squares of the edges (since this sum-function is convex) and maximizes
the area.6 Hence, by (i), αx̂ is maximal for a regular n-polygon. This implies
(ii). �

We now prove Theorem 4.2, which is a slight extension of Theorem A.1.

6This is a classical result known as the Isoperimetric Theorem, cf. Weisstein (2006).
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Proof of Theorem 4.2. Consider the half-line ℓ = [x2, x1,→) through x1

starting from x2 and the half-line ℓ′ = [xn−1, xn,→) through xn starting from
xn−1.

If ℓ and ℓ′ do not intersect, then we can find a point z /∈ P on ℓ′ sufficiently
far from xn such that ∡x̂zx1 < α. Since ∡x̂xnx1 ≥ α, by a continuity
consideration there must be a point y ∈ [xn, z] such that ∡x̂yx1 = α. Then x̂
is a Brocard point in the convex n-polygon with vertices x1, . . . , xn−1, y with
αx̂ = α. By Theorem A.1(ii), α ≤ A(n).

If ℓ and ℓ′ intersect, say in some point z, then it is easy to see that
∡x̂zx1 < α. The argument continues as in the first case. �
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