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Robust Average Derivative Estimation

Marcia M.A. Schafgans� Victoria Zinde-Walshy

July 2007

Abstract. Many important models, such as index models widely used in

limited dependent variables, partial linear models and nonparametric demand stud-

ies utilize estimation of average derivatives (sometimes weighted) of the conditional

mean function. Asymptotic results in the literature focus on situations where the

ADE converges at parametric rates (as a result of averaging); this requires making

stringent assumptions on smoothness of the underlying density; in practice such as-

sumptions may be violated. We extend the existing theory by relaxing smoothness

assumptions and obtain a full range of asymptotic results with both parametric and

non-parametric rates. We consider both the possibility of lack of smoothness and

lack of precise knowledge of degree of smoothness and propose an estimation strategy

that produces the best possible rate without a priori knowledge of degree of den-

sity smoothness. The new combined estimator is a linear combination of estimators

corresponding to di¤erent bandwidth/kernel choices that minimizes the estimated as-

ymptotic mean squared error (AMSE). Estimation of the AMSE, selection of the set

of bandwidths and kernels are discussed. Monte Carlo results for density weighted

ADE con�rm good performance of the combined estimator.

Keywords: Nonparametric estimation, density weighted average derivative estima-

tor, combined estimator.
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1. Introduction

Many important models, such as index models widely used in limited dependent variables,

partial linear models and nonparametric demand studies utilize estimation of average deriv-

atives (sometimes weighted) of the conditional mean function. Härdle, Hildenbrand, Jerison

(1991) and Blundell, Duncan, and Pendakur (1998), amongst others, advocated the deriva-

tive based approach in the analysis of consumer demand, where nonparametric estimation

of Engel curves has become common place (e.g., Yatchew, 2003). Powell, Stock and Stoker

(1989) popularized the use of average derivatives of the conditional mean (or conditional

mean weighted by some function) in the semiparametric estimation of index models by

pointing out that the average derivatives in single index models identify the parameters

�up to scale�.

A large literature is devoted to the asymptotic properties of nonparametric estima-

tors of average derivatives and to their use in estimation of index models and testing of

coe¢ cients. Asymptotic properties of average density weighted derivatives are discussed

in Powell, Stock and Stoker (1989) and Robinson (1989); Härdle and Stoker (1989) in-

vestigated the properties of the average derivatives themselves; Newey and Stoker (1993)

addressed the choice of weighting function. Horowitz and Härdle (1996) extended the ADE

approach in the estimation of coe¢ cients in the single index model to the presence of dis-

crete covariates; Donkers and Schafgans (2005) extended the ADE approach to multiple

index models; Chaudhury et al. (1998) investigated the average derivatives in quantile re-

gression; Li et al. (2003) investigated the local polynomial �tting to average derivatives and

Banerjee (2007) provided a recent discussion on estimating the average derivatives using a

fast algorithm. Higher order expansions and the properties of bootstrap tests of ADE for

hypotheses are investigated in Nichiyama and Robinson (2000, 2005).

In all of the literature on ADE estimation asymptotic theory was provided for para-

metric rates of convergence. Even though the estimators are based on a nonparametric

kernel estimator of the conditional mean which depends on the kernel and bandwidth and

converges at a nonparametric rate, averaging can produce a parametric convergence rate
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thus reducing dependence on selection of the kernel and bandwidth which do not appear in

the leading term of the AMSE expansion. This parametric rate of convergence (and thus

the results in this literature), however, relies on the assumption of su¢ ciently high degree

of smoothness of the underlying density of the regressors. This assumption is not based

on any a priori theoretical considerations nor is it supported by empirical veri�cation. For

example many multimodal distributions, even if they are su¢ ciently smooth, possess deriv-

atives that are large enough to cause problems (see discussion in Marron and Wand, 1992,

for examples of normal mixtures that exhibit features usually thought of as characteristic

of non-smooth densities.). Various examples of multimodal distributions are encountered

in biomedical and statistical studies, e.g., Izenman and Sommer (1988).

Our concern with the assumed high degree of density smoothness led us to extend

the existing asymptotic results by relaxing assumptions on the density. We show that

insu¢ cient smoothness will result in possible asymptotic bias and may easily lead to non-

parametric rates. The selection of optimal kernel order and optimal bandwidth (Powell and

Stoker, 1996) in the absence of su¢ cient smoothness moreover presumes the knowledge

of the degree of density smoothness. Thus an additional concern for us is the possible

uncertainty about the degree of density smoothness. To address problems associated with

an incorrect choice of a bandwidth/kernel pair we construct an estimator that optimally

combines estimators for di¤erent bandwidths and kernels to protect against the negative

consequences of errors in assumptions about the order of density smoothness.

We construct a linear combination of density weighted average derivative estimators for

di¤erent bandwidth/kernel choices, with weights chosen to minimize the estimated asymp-

totic MSE; the resulting estimator we call the combined estimator. Kotlyarova and Zinde-

Walsh (2006) have shown that the weights in this combination provide the best rate avail-

able among all the rates without a priori knowledge of degree of smoothness, thus protecting

against making a bandwidth/kernel choice that relies on incorrect smoothness assumptions

and would yield high asymptotic bias. Without prior knowledge of smoothness there is no

guidance for the choice of the bandwidth or kernel. In this circumstance, the combined

estimator provides a robust alternative to specifying a particular bandwidth/kernel pair.
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Our approach is supported by Hansen (2005). In discussing the choice of kernel for

density estimation, Hansen showed the order of the kernel to have a large impact on its

�nite-sample MISE. With the ideal kernel order depending on the unknown smoothness

of the density Hansen proposed a criterion of minimax regret. Whereas Hansen (2005)

observed little di¤erence in performance among symmetric kernels of the same order, within

our combined estimator, we argue that gains are achievable.

Using a Monte Carlo experiment for the Tobit model, for a variety of distributions for

the explanatory variables (gaussian, tri-modal gaussian mixture and the �double claw�and

�discrete comb�mixtures from Marron and Wand, 1992), we demonstrate that there is no

clear guidance on the choice of suitable kernel bandwidth pair. Even in these cases, where

the smoothness assumptions hold, the high modal nature of these mixture distributions

exhibit large partial derivatives that undermine the performance of ADE. At the same

time, the combined estimator delivers robust reliable results in all cases.

The paper is organized as follows. In section 2 we discuss the general set-up and

assumptions. In section 3 we derive the asymptotic properties of the density-weighted

ADE under various assumptions about density smoothness, derive the joint asymptotic

distribution for ADE estimators based on di¤erent bandwidth kernels pairs, and develop

the combined estimator. Section 4 provides the Monte Carlo study results and Section 5

concludes.

2. General set-up and assumptions

The unknown conditional mean function can be represented as

g(x) = E(yjx) =
Z
y
f �(x; y)

f(x)
dy =

G(x)

f(x)
;

with dependent variable y 2 R and explanatory variables x 2 Rk. The joint density of (y; x)

is denoted by f �(y; x), the marginal density of x is denoted by f(x) and G(x) denotes the

function
R
yf �(y; x)dy:

Since the regression derivative, g0(x); can be expressed as

g0(x) =
G0(x)

f(x)
� g(x)f

0(x)

f(x)
;
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the need to avoid imprecise contributions to the average derivative for observations with low

densities emanates from the presence of the density in the denominator. One way of doing

this is to employ some weighting function, w(x); for example, the density weighted average

derivative estimator of Powell,Stock and Stoker (1989), hereafter referred to as PSS, utilizes

w(x) = f(x): In Härdle and Stoker (1989) trimming on the basis of the density takes the

place of the weighting function, that is they consider wN(x) = 1(f(x) > bN) where bN ! 0:

On the other hand, Fan (1992, 1993), Fan and Gijbels (1992) avoid weighting by use of

regularization whereby n�2 is added to the denominator of the estimator. In this paper we

focus on the PSS estimator.

We now turn to the fundamental assumptions. The �rst two assumptions are common

in this literature, restricting x to be a continuously distributed random variable, where no

component of x is functionally determined by other components of x; imposing a boundary

condition allowing for unbounded x�s and requiring di¤erentiability of f and g:

Assumption 1. The underlying measure of (y; x) can be written as vy � vx, where vx is

Lebesque measure. The support 
 of f is a convex (possibly unbounded) subset of Rk with

nonempty interior 
0:

Assumption 2. The density function f(x) is continuous in the components of x for all

x 2 Rk; so that f(x) = 0 for all x 2 @
; where @
 denotes the boundary of 
: f is

continuously di¤erentiable in the components of x for all x 2 
0 and g is continuously

di¤erentiable in the components of all x 2 �
; where �
 di¤ers from 
0 by a set of measure

0.

Additional requirements involving the conditional distribution of y given x as well as

more smoothness conditions need to be added. The conditions are slightly amended from

how they appear in the literature, in particular we use the weaker Hölder conditions instead

of Lipschitz conditions in the spirit of weakening smoothness assumptions as much as

possible.
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Assumption 3. (a) E(y2jx) is continuous in x

(b) The components of the random vector g0(x) and matrix f 0(x)[y; x0] have �nite second

moments; (fg)0 satis�es a Hölder condition with 0 < � � 1 :���(fg)0(x+�x)� (fg)0(x)��� � !(fg)0 (x) k�xk�
and E(!2

(fg)
0 (x)[1 + jyj+ kxk]) <1:

For kernel estimators considered in the literature both the choice of the kernel (its order)

and the selection of bandwidth have played a crucial role in ensuring that the asymptotic

bias for the nonparametric estimates of the derivative based functionals (averages) vanishes

su¢ ciently fast subject to a high degree of density smoothness. The kernel smoothing

function is assumed to satisfy a fairly standard assumption here, except for the fact that

we allow for the kernel to be non-symmetric.

Assumption 4. (a) The kernel smoothing function K(u) is a continuously di¤erentiable

function with bounded support [�1; 1]k :

(b) The kernel function K(u) obeysZ
K(u)du = 1;Z
ui11 :::u

ik
k K(u)du = 0 i1 + :::+ ik < v(K)Z

ui11 :::u
ik
k K(u)du 6= 0 i1 + :::+ ik = v(K)

where (i1; ::; ik) is an index set,

(c) The kernel smoothing function K(u) is di¤erentiable up to the order v(K).

Various further assumptions have been made in the literature concerning the smoothness

of the density (higher degree of di¤erentiability, Lipschitz and boundedness conditions) to

ensure parametric rates of convergence. We formalize the degree of density smoothness in

terms of the Hölder space of functions. This space for integer m � 0 and 0 < � � 1 is

de�ned as follows. For a set E � Rk the space Cm+�(E) is a Banach space of bounded and
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continuous functions which are m times continuous di¤erentiable with all the mth order

derivatives satisfying Hölder�s condition of order � (see Mathematicheskaya Encyclopedia.

English., ed. M. Hazewinkel) for every x; x+�x 2 E :��f (m)(x+�x)� f (m)(x)�� � !f (m)(x) k�xk� :
Assumption 5. f 2 Cm+�(
) where Cm+�(
) is the Hölder space of functions on 
 � Rk

with m � 1; 0 < � � 1 and E(!2
f (m)

(x)[1 + jyj2 + kxk]) <1:

The assumption implies that each component of the derivative of density f 0(x) 2 Cm�1+�(
)

thus for every component of f 0(x) continuous derivatives of order m� 1 exist (if m� 1 = 0

there is just Hölder continuity of derivative). This permits the following expansion for

c = 0; 1 with c = 0 for the expansion of density and c = 1 for the expansion of the

derivative of the density function:

f (c)(x+�x) (1)

=
m�1X
p=c

( X
i1+:::ik=p�c

1
i1!:::ik!

f (p)(x)�x� +
X

i1+:::ik=m�c

1
i1!:::ik!

f (m)(x+ ��x)�x�

)

=
mX
p=c

( X
i1+:::ik=p�c

1
i1!:::ik!

f (p)(x)�x� +
X

i1+:::ik=m�c

1
i1!:::ik!

�
f (m)(x+ ��x)� f (m)(x)

�
�x�

)
;

where �x denotes the vector (�x1; ::;�xk); �x� the product �x
i1
1 � � ��x

ik
k with � the index

set (i1; : : : ; ik); and f (m)(x) the derivative @m�cf (c)=(@x)�; also � : 0 � � � 1: The �rst

equality is obtained by Taylor expansion (with the remainder term in Lagrange form)

and the second equality is obtained by adding and subtracting the terms with f (m)(x):

By Assumption (5) the
�
f (m)(x+ ��x)� f (m)(x)

�
in the last sum satis�es the Hölder

inequality and thus the last sum is O(k�xkm�c+�):

Lack of smoothness of the density can readily be shown to a¤ect the asymptotic bias

of derivative based estimators since the biases of those estimators can be expressed via the

bias of the kernel estimator of the derivative of density. Let v be the degree of smoothness

of the derivative of the density (equal to m � 1 + � by Assumption (5)), and v(K), the

order of the kernel. De�ne �v = min(v; v(K)): Provided �v = v(K) � v; the bias of the
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derivative of the density, E(f̂ 0(K;h)(xi) � f 0(xi)) = E
�R
K(u)(f 0(xi � uh)� f 0(xi))du

�
; is

as usual O(hv(K)) (by applying the usual �vth order Taylor expansion of f 0(xi � uh) around

f 0(xi)): We next show that with �v = v < v(K); the bias of the derivative vanishes at the

lower rate O(hv): In the latter case substituting (1), with c = 1; �x = �hu; into the bias

expression and using kernel order, yields1

E

�Z
[f 0(x� hu)� f 0(x)]K(u)du

�
(2)

= E

 Z X
�1+:::ik=m�1

1
i1!:::ik!

hm�1 � (�1)m�1
h
f (m)(xi �fhu)� f (m)(xi)iK (u)u�du!

= O(hm�1+�) � O(hv);

where the latter equality uses the Hölder inequality. If di¤erentiability conditions typically

assumed do not hold, then even for bandwidths such that Nh2v(K) = o(1) the bias does not

vanish su¢ ciently fast. With �v = min(v; v(K)) all we can state is the rate O(h�v) for the

bias:

E

�Z
[f 0(x� hu)� f 0(x)]K(u)du

�
= O(h�v):

3. Average density weighted derivative estimator

The average density weighted derivative, introduced in Powell, Stock and Stoker (1989),

PSS, is de�ned as

�0 = E(f(x)g
0(x)): (3)

Given Assumptions 1-3, via integration by parts, (3) can be represented (see Lemma

2.1 in PSS) as:

�0 = �2E(f 0(x)y): (4)

zi = (yi; x
T
i )
T ; i = 1; :::N is a random sample from the distribution of z = (y; xT )T :

1
��R [f 0(x� hu)� f 0(x)]K(u)du�� � hm�1+�!f(m)(x)

R
kK (u)k � kuk du � O(1); where Assumption 4(a)

implies that kK (u)k is bounded (since it is continuous on a closed bounded set), and kuk is bounded on

the support of K; Assumption 5 ensures boundedness of E


wf(m)(x)



 :
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The estimator of �0 proposed by PSS uses the sample analogue of (4), where f 0(x) is

replaced by a consistent nonparametric estimate, i.e.,

�̂N(K;h) =
�2
N

NX
i=1

f̂ 0(K;h)(xi)yi; (5)

with

f̂ 0(K;h)(xi) =
1

N�1

NX
j 6=i

�
1

h

�k+1
K 0(

xi � xj
h

):

K is the kernel smoothing function and h is a smoothing parameter that depends on the

sample size N; with h! 0 as N !1:

The variance of �̂N(K;h) is given by

V ar(�̂N(K;h)) = �1�(K)N
�2h�(k+2) + �2�N

�1 +O(N�2) (6)

where

�1�(K) = 4E
�
y2f(xi)�2(K) + �

�
2(K)(gf)(xi)yi

�
;

with �2(K) =

Z
K 0(u)K 0(u)Tdu;

��2(K) =

Z
K 0(u)K 0(�u)Tdu; (under symmetry ��2(K) = ��2(K));

and �2� = 4
n
E([(g0f)(xi)� (yi � g(xi))f 0(xi)] [(g0f)(xi)� (yi � g(xi))f 0(xi)]T )

o
� 4�0�T0 :

Note that�2� for su¢ ciently smooth f(x) coincides with the asymptotic variance of
p
N�̂N(K;h)

considered in PSS, when Nhk+2 ! 1: For a symmetric kernel, �1�(K) simpli�es to

4�2(K)E [�
2(xi)f(xi)] ; with the conditional variance �2(x) = E(y2jx) � E(yjx)2. For

this case, Powell and Stoker (1996) discuss the rates of the asymptotic variance in (6) with

a view to selecting the optimal for MSE bandwidth rate.

The asymptotic variance does not depend on the kernel function when the bandwidth

satis�es Nhk+2 !1; but only if we have a certain degree of smoothness of the density: v >

(k + 2)=2: In the absence of this degree of di¤erentiability the asymptotic variance (as the

asymptotic bias) does depend on the weighting used in the local averaging possibly yielding

a non-parametric rate. To express the asymptotic bias of the estimator �̂N(K;h) de�ne

A(K;h; xi) = Ezi

h
f̂ 0(K;h)(xi)� f 0(xi)

i
=

Z
K(u)(f 0(xi � uh)� f 0(xi))du:
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Then

E(�̂N(K;h)� �0) = �2E(A(K;h; xi)yi): (7)

As shown in Section 2, EA(K;h; xi) is O(h�v). We assume

Assumption 6. As N !1; �2h��vE(A(K;h; xi)yi)! B(K); where jB(K)j <1 holds.

Then

E(�̂N(K;h)� �0) = h�vB(K) + o(h�v)

The asymptotic bias of the estimator rN
�
�̂N(K;h)� �0

�
for some rate rN can then be

written as

Bias(rN

�
�̂N(K;h)� �0

�
) = rNh

�vB(K): (8)

and vanishes if rNh�v ! 0: We note that Assumption 6 could hold as a results of primitive

moment assumptions on yi; f(xi); and g(xi):

The following theorem describes the statistical properties of the PSS estimator in the

cases: (a) of su¢ cient smoothness: �v > k+1
2
, where the only new contribution relative to

PSS is in considering the possibility of sub-optimal bandwidth choice (subcases (a)i.,ii.) and

providing expressions for the moments for possibly non-symmetric kernels; (b) of marginally

enough smoothness; (c) of smoothness (or kernel order) insu¢ cient to allow for a parametric

rate: �v < k+1
2
. The latter cases were not examined in the literature where the stringent

smoothess assumptions made the appropriate optimal choice of kernel order and bandwidth

rate straightforward.

Theorem 1. Under Assumptions 1�6

(a) If the density is su¢ ciently smooth and order of kernel su¢ ciently high: �v > k+2
2

i. for h : Nhk+2 = o(1); N2hk+2 ! 1 in the limit there is an asymptotically

unbiased but not e¢ cient estimator

E(Nh
k+2
2

�
�̂N(K;h)� �0

�
) ! 0;

E(Nh
k+2
2

�
�̂N(K;h)� �0

�
)(Nh

k+2
2

�
�̂N(K;h)� �0

�T
! �1�(K);
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ii. for h : Nhk+2 ! C; 0 < C <1 (so Nh2�v = o(1)) similarly to i.,

E(N
1
2

�
�̂N(K;h)� �0

�
) ! 0;

E(N
1
2

�
�̂N(K;h)� �0

�
)(N

1
2

�
�̂N(K;h)� �0

�T
! C�1�(K) + �2�;

iii. for h : Nhk+2 !1; Nh2�v = o(1)

E(N
1
2

�
�̂N(K;h)� �0

�
! 0;

E(N
1
2

�
�̂N(K;h)� �0

�
)(N

1
2

�
�̂N(K;h)� �0

�T
! �2�;

and the asymptotic normality result in PSS, Theorem 3.3 holds:

p
N
�
�̂N(K;h)� �0

�
d! N(0;�2�);

iv. for h : Nhk+2 !1; but Nh2�v ! C21 ; 0 < C1 <1; in the limit there is a biased

asymptotically normal estimator:

p
N
�
�̂N(K;h)� �0

�
d! N(C1B(K);�2�);

v. for h : Nh2�v !1; the bias dominates

h��v
�
�̂N(K;h)� �0

�
p! B(K):

(b) For the case �v = k+2
2
i., ii. and v. of part (a) apply.

(c) If either the density is not smooth enough or the order of the kernel is low: �v < k+2
2

the parametric rate cannot be obtained:

i. for h : N2hk+2+2�v = o(1), N2hk+2 ! 1 in the limit there is an asymptotically

unbiased but not e¢ cient estimator:

E(Nh
k+2
2

�
�̂N(K;h)� �0

�
) ! 0;

E(Nh
k+2
2

�
�̂N(K;h)� �0

�
)(Nh

k+2
2

�
�̂N(K;h)� �0

�T
! �1�(K);
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ii. for h : N2hk+2+2�v ! C22 ; 0 < C2 < 1; N2hk+2 ! 1 in the limit there is

asymptotic bias:

E(Nh
k+2
2

�
�̂N(K;h)� �0

�
) ! C2B(K);

E(Nh
k+2
2

�
�̂N(K;h)� �0

�
)(Nh

k+2
2

�
�̂N(K;h)� �0

�T
! �1�(K);

iii. for h : N2hk+2+2�v !1 the bias dominates:

h��v
�
�̂N(K;h)� �0

�
p! B(K):

Proof. See Appendix.

The Theorem shows that selection of the optimal bandwidth and kernel order to mini-

mize the mean squared error critically depends on our knowledge of the degree of smooth-

ness of the density. The MSE(�̂N(K;h)) can be represented as

MSE(�̂N(K;h)) = (�1�(K) + o(1))N
�2h�(k+2)+(�2� + o(1))N

�1+
�
B(K)BT (K) + o(1)

�
h2v;

and the optimal bandwidth yields

hopt = cN�2=(2v+k+2): (9)

If v; the true di¤erentiability (smoothness) of f 0 is known we can choose the order of

kernel v(K) � [v] and then since v = v(k) the problem of e¢ cient estimation reduces

to �nding an appropriate c (e.g., Powell and Stoker, 1996). If derivatives of high order

exist, further improvements in e¢ ciency can be obtained by using a higher order kernel to

reduce the bias. The advantage of being able to assume this high di¤erentiability order is

the insensitivity of the limit process to the bandwidth and kernel over a range of choices

that satisfy the assumptions (among which Nhk+2 ! 1). If, however, the density is not

su¢ ciently smooth the parametric rate may not be achievable and bandwidth and kernel
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choices become crucial in ensuring good performance. Moreover, if the degree of density

smoothness is not known there is no guidance for the choice of kernel and bandwidth.

In Kotlyarova and Zinde-Walsh (2006), hereafter referred to as KZW, the situation

where there is uncertainty about smoothness of density was considered. We note here that

the results concerning MSE in KZW do not require that the limit processes be Gaussian and

rely on moment conditions only. Theorem 1 here corresponds to the moment requirements

of Assumption 1 of that paper and demonstrates that when our Assumptions 1�6 are

satis�ed the estimator satis�es the part of Assumption 1 that requires �rst and second

limit moments. We next establish that the part of Assumption 2 of that paper as it

relates to �rst and second moments is satis�ed as well. Consider kernel/bandwidth pairs

(Kt; hp) for a set of kernels, Kt; t = 1; :::T and bandwidths, hp; p = 0; 1; :::P; and order

those pairs: (Kt; hp) � (Ks; hs); s = 1; :::S, (where some s corresponds to each pair)

and the corresponding estimators, �̂N(Ks; hs): If all satisfy the assumptions of Theorem 1

then there exist corresponding rates rNs for each pair such that rNs
�
�̂N(Ks; hs)� �0

�
has

�nite �rst and second moments. If we consider the vector with stacked vector components

rNs

�
�̂N(Ks; hs)� �0

�
; s = 1; :::S we need to establish the �nite limit covariances between

these components. De�ne

�1�(Ks1 ; Ks2 ; hs1 ; hs2) = 4E
�
y2f(xi)�2(Ks1 ; Ks2 ; hs1 ; hs2) + �

�
2(Ks1 ; Ks2 ; hs1 ; hs2)(gf)(xi)yi

�
;

with �2(Ks1 ; Ks2 ; hs1 ; hs2) =

Z
K 0
s1
(u)K 0

s2
(u
hs1
hs2
)Tdu; (10)

��2(Ks1 ; Ks2 ; hs1 ; hs2) =

Z
K 0
s1
(u)K 0

s2
(�uhs1

hs2
)Tdu; (under symmetry ��2 = ��2).

Theorem 2. Under the Assumptions of Theorem 1 for the vector with components

rNs

�
�̂N(Ks; hNs)� �0

�
; s = 1; :::S the limit covariance matrix has k � k blocks corre-

sponding to s1; s2

�s1s2 = �1�(Ks1 ; Ks2 ; hs1 ; hs2)N
�2h�(k+1)s2

h�1s1 + �2�N
�1 +O(N�2) (11)

and for components that correspond to estimators that converge at di¤erent rates limit

covariances are zero.
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Proof. See appendix.

Consider a linear combination of the estimators

�̂
�
N =

X
s

as�̂N(Ks; hNs) with
SX
s=1

as = 1:

We can represent the limit variance of �̂
�
N asX

s1

X
s2

as1as2Cov(�̂N(Ks1 ; hs1); �̂N(Ks2 ; hs2)) �
X

as1as2�s1s2 ;

where �s1s2 is given by (11) .

The MSE(�̂
�
N) =MSE(

P
s as�̂N(Ks; hs)) can then be represented as

MSE(�̂
�
N) =

X
as1as2(Bs1BTs2 + �s1s2):

To optimally choose the weights as; we will minimize the trace of the AMSE as in KZW.2

tr(AMSE(�̂
�
N) =

X
as1as2( ~BTs1 ~Bs2 + tr~�s1s2) = a

0Da;

where fDgs1s2 = BTs1Bs2 + tr�s1s2 ;

~Bs = Bs=rNs; and ~�s1s2 = �s1s2=(rNs1 � rNs2):

The combined estimator is de�ned as the linear combination with weights that minimize

the estimated tr(AMSE(�̂
�
N)):

KZWdiscuss the optimal weights that minimize the (consistently estimated) tr(AMSE(�̂
�
N))

subject to
P

s as = 1. They show that the trace of AMSE of the combined estimator

converges at a rate no worse than that of the trace of AMSE for the fastest converging

individual estimator. Moreover, it is possible for the combined estimator to converge at a

faster rate than any of the individual estimators that enter into the combination and for

ADE to achieve a parametric rate even in the case when due to lack of di¤erentiability

none of the individual estimators can. To illustrate this point we provide a hypothetical

example.

2Note MSE only provides a complete ordering when �̂
�
N is a scalar, using a trace is one way to obtain

a complete ordering. Depending on which scalar function of the AMSE is used the order might di¤er.
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Example: Suppose that the density f satis�es Assumption (5) withm = 2; � > 0; so that

v = �v = 2: Assume also that k = 3: Then the optimal bandwidth rate for the ADE estimator

by (9) is N� 2
9 and provides an oversmoothed estimator that converges at the nonparametric

rate N� 4
9 regardless of the order of the kernel. Suppose now that for bandwidth h = N� 2

9

and for some kernels Kj the ADE estimator allows the following expansion �̂(hoi; Kj) =

�0+h
2
oiB(Kj)+h

2+�
oi B
(Kj)+(Nh

2
oi)

�1~�(hoi; Kj)+N
�1=2~�1=2(hoi; Kj)+op(h

2+�
oi +(Nh2oi)

�1+

N�1=2) with B0s denoting some constant 3�1 vectors and ~�0s denoting random vectors with

zero means and bounded variances. Consider four estimators corresponding to di¤erent

kernels with bandwidth h = N� 2
9 : Consider a vector of weights a = (a1; a2; a3; a4)

0 with

a4 = 1�a1�a2�a3; it can be chosen to satisfy a1B(K1)+a2B(K2)+a3B(K3)+a4B(K4) = 0:

For such weights

a1�(ho; K1) + a2�(ho; K2) + a3�(ho; K3) + a4�(ho; K4)

= Op(h
2+�
o + (Nh2o)

�1 +N�1=2);

note that (Nh2o)
�1 = N� 5

9 = o(N�1=2), (Nh2o)
�1 = N� 4�2�

9 = o(N�1=2) for any � > :25

and in such a case parametric rate is achieved for the combined estimator (by weights that

minimize the MSE of the linear combination). Note that the speci�c bandwidth h = N� 2
9

was used to simplify the example, but it is easy to see that for a range of bandwidths

N� 2
9
+" for 0 � " < 4��1

18(2+�)
when � > :25 weights that produce a parametrically convergent

combined estimator exist.

The optimality property of the combined estimator relies on consistent estimation of

biases and covariances.3 To provide a consistent estimate for the asymptotic variance that

does not rely on the degree of smoothness, we apply the bootstrap, which gives

b~�s1;s2 = dCovB(�̂N(Ks1 ; hs1); �̂N(Ks2 ; hs2)) (12)

=
1

B

BX
b=1

�
�̂b;N(Ks1 ; hs1)� �̂N(Ks1 ; hs1)

���
�̂b;N(Ks2 ; hs2)� �̂N(Ks2 ; hs2)

��0
;

3Examples in KZW demonstrate that a combined estimator can reduce the AMSE relative to an es-

timator based on incorrectly assumed high smoothness level even when the weights are not optimally

determined.
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where subscript b indicates the estimator obtained from a bootstrapped sample. To provide

estimates of the biases, we need to assume that for all kernels we consider an undersmoothed

bandwidth, yielding an asymptotic bias equalling zero. Let hs;0 denote the smallest band-

width we consider for kernel Ks: The estimator for the bias is obtained as

b~Bs � [Bias(�̂N(Ks; hs)) = �̂N(Ks; hs)�
1

T

TX
t=1

"
1

B

BX
b=1

�̂b;N(Kt; ht;0)

#
:

That is we subtract from �̂N(Ks; hs) the bootstrapped averaged estimates at the lowest

bandwidths for all the kernels, i = 1; :::; T .

4. Simulation

In order to illustrate the e¤ectiveness of the combined estimator, we provide a Monte Carlo

study where we consider the Tobit model. The Tobit model under consideration is given

by

yi = y�i if y
�
i > 0; y�i = x

T
i � + "i; i = 1; :::; n

= 0 otherwise,

where our dependent variable yi is censored to zero for all observations for which the latent

variable y�i lies below a threshold, which without loss of generality is set equal to zero.

We randomly draw f(xi; "i)gni=1 ; where we assume that the errors, drawn independently

of the regressors, are standard Gaussian. Consequently, the conditional mean representa-

tion of y given x can be written as

g(x) = xT� � �(xT�) + �(xT�);

where �(�) and �(�) denote the standard normal cdf and pdf respectively. Irrespective of

the distributional assumption on "i; this is a single index model as the conditional mean of

y given x depends on the data only through the index xT�. While MLE obviously o¤ers

the asymptotically e¢ cient estimator of �; (density weighted) ADE o¤ers a semiparametric

estimator for � which does not rely on the Gaussianity assumption on "i: Under the usual
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smoothness assumptions, the �nite sample properties of ADE for this Tobit model have

been considered in the literature (Nichiyama and Robinson, 2005).

We select two explanatory variables, and set � = (1; 1)T : We make various assump-

tions about the distribution of our independent, explanatory variables. Our base model,

labeled (s,s), uses two independent standard normal explanatory variables, or fss(x1; x2) =

�(x1)�(x2): The other models introduce various mixtures of normal explanatory variables,

which while still being in�nitely di¤erentiable, do allow behavior resembling that of non-

smooth densities. In particular, we consider the trimodal normal mixture 0:5�(x+0:767)+

3�(x+0:767�0:8
0:1

) + 2�(x+0:767�1:2
0:1

) (KZW) and the double claw and discrete comb mixture

densities (Marron and Wand, 1992) which we denote respectively by fm(x); fc(x); and

fd(x): The (s,m) model we consider uses fsm(x1; x2) = �(x1)fm(x2); the (m,m) model

fmm(x1; x2) = fm(x1)fm(x2); the (s,c) model fsc(x1; x2) = �(x1)fc(x2); the (s,d) model

fsd(x1; x2) = �(x1)fd(x2); and the (c,d) model fcd(x1; x2) = fc(x1)fd(x2). We vary the

sample size from 1000 to 2000 observations and draw 100 replications in each case.

The multivariate kernel functionK(�) (on R2) is chosen as the product of two univariate

kernel functions. We use a second and fourth order kernel in our Monte Carlo experiment,

where, given that we use two explanatory variables, the highest order satis�es the theo-

retical requirement for ascertaining a parametric rate subject to the necessary smoothness

assumptions. Both are bounded, symmetric kernels, which satisfy the assumption that the

kernel and its derivative vanish at the boundary.

For each kernel we consider �ve di¤erent bandwidths. First, we apply the usual cross-

validation for nonparametric regression, yielding a bandwidth sequence hgcv = cN�1=(2�v+2)

(see Stone (1982)) with �v = min(v; v(K)). We allow the cross validated bandwidths to

be distinct for each explanatory variable and obtain them using a gridsearch4. For den-

sities of su¢ cient smoothness, v = v(K); this cross validated bandwidth does not rep-

4The cross validated bandwidths for the second and fourth order kernel in the (s,s) model with N = 2000

were
�
0:66
0:66

�
and

�
1:50
1:50

�
respectively (compared to

�
0:74
0:74

�
and

�
1:58
1:56

�
with N = 1000). With N = 2000; the

bandwidths for the (s,m) model were
�
0:63
0:52

�
and

�
1:54
0:92

�
respectively; the (m,m) model

�
0:52
0:52

�
and

�
1:19
1:18

�
; the

(s,c) model
�
0:61
0:70

�
and

�
1:45
1:57

�
; the (s,d) model

�
0:69
0:43

�
and

�
1:57
0:94

�
; and the (c,d) model

�
0:75
0:39

�
and

�
1:70
0:97

�
:
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resent the undersmoothing required to ensure asymptotic unbiasedness as Nh2v ! 1;

providing cases (a,b)v. in Theorem 1 � the optimal bandwidth minimizing the mean

squared error is given by hopt = cN�2=(2v+4): When densities are not su¢ ciently smooth,

v = v < v(K); hgcv will also correspond to oversmoothing providing case (c)iii. in Theo-

rem 1. In ascending order, the bandwidths considered are h0 = hgcv �N�2[2=(2v+4)�1=(2�v+2)];

h1 = hgcv � N�[2=(2v+4)�1=(2�v+2)]; h2 = hgcv � N� 1
2
[2=(2v+4)�1=(2�v+2)]; h3 = hgcv; and h4 =

hgcv � N 1
2
[2=(2v+4)�1=(2�v+2)]: Clearly h4 would yield an oversmoothed bandwidth, and h1

would yield the rate appropriate for the optimal bandwidth hopt. With �v left unspec-

i�ed, we suggest to evaluate N�[2=(2v+4)�1=(2�v+2)]; the optimal weighting of hgcv (h1); at

the value of �v giving the smallest weight (i.e., �v =
p
2 � note that the derivative of

� [2=(2v + 4)� 1=(2�v + 2)] wrt �v is zero at �v =
p
2) in an attempt to guard against

insu¢ cient undersmoothing. With N = 1000; this yields h0 = 0:3hgcv; h1 = 0:55hgcv;

h2 = 0:74hgcv; and h4 = 1:34hgcv: Estimators for biases and covariances of the density

weighted ADEs are obtained by bootstrap (with 250 bootstraps) as discussed in the previ-

ous section.

In table A1, in the Appendix, we report the true �nite sample Root Mean Squared Errors

(RMSE) of various density weighted average derivatives for the sample sizes N = 1000 and

N = 2000:We consider two combined estimators depending on whether we use h0 or h1 as

our smallest bandwidth. In all models the biases and standard deviations of the individual

estimators on average (not reported) behave as expected: as the bandwidth increases, bias

becomes more pronounced and the standard deviation declines. The theoretical standard

deviation (using the leading two components of Var(�̂N) given in (6) compares very well

with the standard deviation based on the bootstrap.

We note large discrepancies in RMSE performance between the models (i.e., between the

di¤erent distributions considered for the explanatory variables) and within each model for

the range of bandwidths considered. All mixtures of normals considered exhibit large partial

derivatives due to their high modal nature that, despite satisfying the usual smoothness

assumptions, can be seen to clearly undermine the performance of the density weighted

ADE. The RMSE of the ADE is largest for the (m,m) model, the model where both
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explanatory variables are drawn from a trimodal normal mixture, ranging between 0.1296

and 0.1877 when N = 1000: This contrasts sharply with the RMSE in the (s,s) case where it

ranges between 0.0045 and 0.0156. Comparing the mixtures models (s,m), (s,c), and (s,d),

the discrete comb mixture, in particular, generates a large variation in RMSE performance

for the range of bandwidths considered, whereas the performance in RMSE for the claw

mixture is fairly stable. With N = 1000 the RMSE ranges between 0.0449 and 0.0618

in the (s,m) model, versus 0.0237�0.0300 and 0.0176�0.0690 in the (s,c) and (s,d) model

respectively.

The following tables summarize the performance of various individual estimators as

well as the combined estimators for the models considered. Our comparison is based on the

RMSE; under "best" we list the estimator(s) with the lowest RMSE, under "worst" that

with the largest RMSE (we note the ratio to RMSE of "best", r > 1; in brackets); "good"

estimators with RMSE giving the ratio to "best" below 1/3 that of the worst: < 1+ 1
3
(r�1),

"fair" with the ratio below 2/3: 1 + 2
3
(r � 1), "bad" with the ratio higher than that.

The implication from these tables is clear. There is no rule regarding either kernel

order or bandwidth that works uniformly (similar results found by Hansen, 2005): some

individual estimators that are best for one model are worst for another; the behavior can

change substantially with change in sample size. For example the advantage of using higher

order kernel with smaller than cross-validated bandwidths for the (m,m) model contrasts

with its poor performance in the (c,d) and (s,d) models, where second order kernel at

higher than cross-validated bandwidths performs best. The individual estimators that are

never bad are those with K2 at h1 and h2 and with K4 at h1; h2; however for all these

estimators (except (K2; h2) that has 3 "good", 3 "fair" scores at both sample sizes) relative

performance deteriorated as sample size increased, e.g. for (K4; h2) at 1000 there are 2

"best", 3 "good" and one "fair", going to 2 "best", 2"good" and 2 "fair" at 2000.

At the same time the combined estimator, typically not providing the best RMSE, does

provide more robust results �never delivering a RMSE worse than the poorest performing

kernel bandwidth pair. Generally, the RMSE of the combined estimator performs better

than individual estimators for a large range of bandwidths. In particular, the combined
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Table 1: Tobit Model: Summary Performance RMSE ADE estimates N = 1000

Model best good fair bad worst

(s,s) (K4; h2)

(K2; h1=h2=h3)

(K4; h1=h3=h4)

(comb; h1)

(K2; h4)

(comb; h0)
(K4; h0) (K2; h0) [3:467]

(s,m) (K4; h1=h2)

(K2; h0=h1=h2=h3)

(K4; h0=h3)

(comb; h0=h1)

(K4; h4) (K2; h4) [1:376]

(m,m) (K4; h0)

(K2; h0=h1)

(K4; h1)

(comb; h1)

(K2; h2)

(K4; h2=h3)

(comb; h0)

(K2; h3=h4) (K4; h4) [1:448]

(s,c) (K4; h1)

(K2; h1)

(K4; h0=h2=h3)

(comb; h0=h1)

(K2; h0=h2=h3) (K4; h4) (K2; h4) [1:266]

(s,d) (K2; h4)
(K2; h3)

(K4; h2=h3=h4)

(K2; h1=h2)

(K4; h1)

(comb; h1)

(K4; h0)

(comb; h0)
(K2; h0) [3:920]

(c,d) (K2; h4)

(K2; h1=h2=h3)

(K4; h1=h2=h3=h4)

(comb; h1)

(K2; h0)

(comb; h0)
(K4; h0) [3:155]
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Table 2: Tobit Model: Summary Performance RMSE ADE estimates N = 2000

Model best good fair bad worst

(s,s) (K4; h2)

(K2; h1=h2=h3)

(K4; h1=h3=h4)

(comb; h1)

(K2; h4)

(K4; h0)

(comb; h0)

(K2; h0) [4:000]

(s,m) (comb; h0)

(K2; h0=h1)

(K4; h0=h1=h2)

(comb; h1)

(K2; h2=h3)

(K4; h3)
(K4; h4) (K2; h4) [1:525]

(m,m) (K4; h0)
(K2; h0=h1)

(K4; h0=h1)

(K2; h2=h3)

(K4; h1=h2)

(K2; h4)

(K4; h3)
(K4; h4) [1:638]

(s,c) (K4; h2)

(K2; h1=h2)

(K4; h0=h1=h3)

(comb; h0=h1)

(K2; h3)

(K4; h4)
(K2; h4) (K2; h0) [1:263]

(s,d) (K2; h4)
(K2; h3)

(K4; h3=h4)

(K2; h1=h2)

(K4; h1=h2)

(comb; h1)

(K2; h0)

(comb; h0)
(K4; h0) [3:841]

(c,d) (K2; h4)

(K2; h2=h3)

(K4; h1=h2=h3=h4)

(comb; h1)

(K2; h1)
(K4; h0)

(comb; h0)
(K2; h0) [3:046]
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estimator (comb; h1) performs stably with 5 "good" and 1 "fair" at both sample sizes even

though some very badly behaved estimators enter into the combination. The estimator

(comb; h1) for the base (s,s) model, reveals a performance similar to the optimal ADE

estimator and does not exhibit much of an e¢ ciency loss con�rming the results about

its being equivalent to the optimal rate estimator. The same can be said for the (s,c)

model. The estimator (comb; h0) can be "bad"; as expected the RMSE performance of the

combined estimator is related to the RMSE performance of the smallest bandwidth used

for each kernel; nevertheless it is never as bad as the worst individual estimator. In the

base model, the use of h0 as the smallest bandwidth also worsens the RMSE performance

of our combined estimator relative to h1 due to the increased variability it imposes. On the

other hand for the (s,m) model with N = 2000; the estimator (comb; h0) even outperforms

the optimal ADE kernel. This reveals that in case where the density is not su¢ ciently

smooth or while smooth as a shape that gives high values for low-order derivatives, gains

from the combined estimator relative to the optimal ADE estimator can be obtained.

Clear gains from using the combined ADE estimator for the models with the trimodal

mixture of normals and/or discrete comb can be observed. Both combined estimators in

the (s,m) and (m,m) models lie closer to the optimal ADE estimator than the worst ADE

estimator. The large variation in RMSE performance for the range of bandwidths and

choice of kernel considered in the (s,d) and (c,d) models illustrate to the potential gains of

using the combined ADE estimator in the discrete comb setting. When comparing both

combined estimators to the, fairly stable performing, individual (K4; h2) estimator we note

that generally the relative performance of the combined estimator improves with the sample

size. In table A.2 in the appendix, the ratio of the RMSE of our combined estimator to

the individual (K4; h2) estimator for our models is provided.

In agreement with the results for the combined estimator, oversmoothed individual

estimators get weights of di¤erent signs re�ecting the tendency of the combined estimator to

balance o¤ the biases. With N = 2000, on average the weights (a2;h1 ; :::; a2;h4 ; a4;h1 ; :::; a4;h4)

for (s,s) the model are (0:03; �0:07; 0:23; �0:80; 0:03; 0:10; 0:40; 1:07); for (s,m) the

weights are (0:05; �0:20; 0:65; �1:88; 0:03; 0:36; 0:44; 1:55); for (m,m) (0:16; 0:04; 0:86;
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�1:89; �0:15; 0:14; 1:30; 0:53); for (s,c) (0:03; �0:01; 0:24;�0:80; 0:01; 0:05; 0:65; 0:82);

for (s,d) (�0:03; 0:06; 0:92; �1:55; 0:37; 0:14; 0:77; 0:32); and for (c,d) (0:05;�0:21; 0:83;

�1:04; 0:44; 0:02; 0:76; 0:16) �comparable weights are obtained when h0 is used as smallest

bandwidth when giving zero weight to this bandwidth in the combination. More weight,

including of opposite signs, are given to the higher bandwidths for the second and fourth

order kernel.

In Table A3 we present selected RMSE estimates of the parameters in Tobit model.

Since the ADE allows for the estimation of � = (�1; �2)
T up to scale, we considered

results of the parameter estimates subject to three possible normalisations: (i) where �1 is

standardized to 1 (unit normalization), (ii) where the estimated slope coe¢ cient for �2 is

rescaled to have the sum of their absolute values equal to 2 (normalization considered by

PSS), and (iii) where we consider the polar coordinate arctan(�2=�1): The results based on

the density weighted ADE estimator are provided for each kernel/bandwidth pair selection

as well as for the combined estimator. For comparison, RMSE of conformably normalized

Tobit MLE parameter estimates are reported as well.

We make the following observations: Superiority in estimating ADE does not necessar-

ily translate into better parameter estimators. Only in the (s,s) model does the optimal

kernel bandwidth combination for parameter estimates (K4; h
gcv) compare well with the

optimal ADE kernel/bandwidth combination (K4; h2). The loss in e¢ ciency arising from

not knowing the distribution of the disturbances occurs as expected, but is within reason

in this case: the standard deviation of the combined semiparametric estimator is less than

double that of the Tobit MLE. In all other models, the optimal kernel bandwidth com-

bination for parameter estimates typically di¤er substantially from that for the optimal

ADE. Moreover in these models, the unit normalization typically gives rise to di¤erent

optimal kernel bandwidth combinations than the PSS and polar normalizations, which by

and large perform comparably. The reason for this is that, as argued also by PSS, the unit

normalization, in particular when choosing small bandwidths, exhibit ill-behaved sample

moments (arising from taking the ratio of two estimators which might be arbitrarily large).

For the (m,m) model, where the optimal ADE kernel bandwidth combination (K4; h0) is,
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this clearly points to a wedge between optimal ADE performance and good parameter

estimates, but even for the PSS and polar normalization the results indicate that the band-

width should be less undersmoothed than indicated for optimal ADE. For the (c,d) model,

the performance of the PSS and polar normalized parameter estimates even suggest the

use of a higher order kernel, not required for optimal ADE performance. While the results

are suggestive that more robust parameter estimates can be obtained with the help of our

combined ADE, it is noted that the weights are not chosen with optimality of RMSE for

the parameter estimates in mind. This provides an interesting area of future research.

5. Conclusions

We have questioned in this paper the high degree of density smoothness assumed in the

literature for obtaining the parametric rate for ADE. We show that insu¢ cient smoothness

will result in possible asymptotic bias and may easily lead to non-parametric rates. The

selection of optimal kernel order and optimal bandwidth (Powell and Stoker, 1996) in the

absence of su¢ cient smoothness moreover presumes the knowledge of the degree of density

smoothness. Our Monte Carlo simulations demonstrate that even in the case where formally

the smoothness assumptions hold, due to large values for the derivatives, the behavior

of ADE becomes problematic. By not relying on a single kernel bandwidth choice, our

combined estimator reduces this sensitivity.

6. Appendix

The proof of Theorems 1 and 2 relies on the following Lemmas 1 and 2, correspondingly,

where moments are computed under the general assumptions of this paper.

We obtain the moments by direct computation for symmetric as well as non-symmetric

kernels here.

Lemma 1. Given Assumptions 1-4, the variance of �̂N(K;h) can be expressed as

V ar(�̂N(K;h))

� (�1� + o(1))N
�2h�(k+2) + (�2� + o(1))N

�1 +O(N�2)
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where

�1� = 4E
�
y2i f(xi)�2(K) + �

�
2(K)g(xi)f(xi)yi

�
;

�2� = 4
�
E(g0(xi)f(xi)� (yi � g(xi))f 0(xi))(g0(xi)f(xi)� (yi � g(xi)f 0(xi)))T

	
� 4�0�T0 ;

for

�2(K) =

Z
K 0(u)K 0(u)Tdu

��2(K) =

Z
K 0(u)K 0(�u)Tdu; (under symmetry ��2(K) = ��2(K)).

Proof. First, recall that

Bias(�̂N(K;h)) = �2E(A(K;h; xi)yi = hvB(K) + o(hv)

with

A(K;h; xi) =

Z
K(u)(f 0(xi � uh)� f 0(xi))du: (A.1)

To derive an expression for the Variance of �̂N(K;h); we note

V ar(�̂N(K;h)) = E(�̂N(K;h)�̂N(K;h)
T )� E�̂N(K;h)E�̂N(K;h)T :

Let I(a) = 1; if the expression a is true, zero otherwise. We decompose the �rst term as

follows

E
�
�̂N(K;h)�̂N(K;h)

T
�

(A.2)

= 4E

8<:
"
1
N

NX
i=1

f̂ 0(K;h)(xi)yi

#"
1
N

NX
i=1

f̂ 0(K;h)(xi)yi

#T9=;
= 4

n
1
N
E
�
f̂ 0(K;h)(xi)f̂

0
(K;h)(xi)

Ty2i

�
+ N�1

N
E
�
f̂ 0(K;h)(xi1)f̂

0
(K;h)(xi2)

Tyi1yi2I( i1 6= i2)
�o
.
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The �rst expectation yields

E
�
f̂ 0(K;h)(xi)f̂

0
(K;h)(xi)

Ty2i

�
(A.3)

=
�

1
N�1

�2
E

8<:Ezi
0@y2i

"X
j 6=i

�
1
h

�k+1
K 0(

xi�xj
h
)

#"X
j 6=i

�
1
h

�k+1
K 0(

xi�xj
h
)

#T1A9=;
= 1

N�1 �
�
1
h

�2k+2
E
�
y2iEzi

�
K 0(

xi�xj
h
)K 0(

xi�xj
h
)T I( i 6= j)

��
+

N�2
N�1 �

�
1
h

�2k+2
E
h
y2iEzi

�
K 0(

xi�xj1
h
)K 0(

xi�xj2
h
)T I( i; j1; j2 pairwise distinct)

�i
= 1

N�1 �
�
1
h

�k+2
E

�
y2i

Z
K 0(u)K 0(u)Tf(xi � uh)du

�
+

N�2
N�1

�
1
h

�2k+2
E

�
Ezi

�
yiK

0(
xi�xj1
h
)
�
Ezi

�
yiK

0(
xi�xj2
h
)
�T
I( i; j1; j2 pairwise distinct)

�
= 1

N�1 �
�
1
h

�k+2 �
Ey2i f(xi)�2(K) +O(h)

�
+

N�2
N�1 �

�
E(f 0(xi)yi)(f

0(xi)yi)
T +O(hv)

�
;

where for the third and the last equality we use change of variable in integration and

independence of xj1 , xj2; by Assumptions 4 and 5 the moments of the additional terms are

correspondingly bounded. Further

E
�
f̂ 0(K;h)(xi)f̂

0
(K;h)(xi)

Ty2i

�
= f 1

N
�
�
1
h

�k+2 �
Ey2i f(xi)�2(K) +O(h)

�
+
�
E(f 0(xi)yi)(f

0(xi)yi)
T +O(hv)

�
gf1 +O(N�1)g:

The second expectation yields,

E
�
f̂ 0(K;h)(xi1)f̂

0
(K;h)(xi2)

Tyi1yi2I(i1 6= i2)
�

=
�

1
N�1

�2 � 1
h

�2k+2
E

 
yi1yi2

X
j1 6=i1

X
j2 6=i2

K 0(
xi1�xj1

h
)K 0(

xi2�xj2
h

)T

!
= N�2

(N�1)2 �
�
1
h

�2k+2
E
�
yi1yi2K

0(
xi1�xj1

h
)K 0(

xi2�xj1
h

)T I( i1; i2; j1 pairwise distinct)
�

+ 1
(N�1)2 �

�
1
h

�2k+2
E
�
yi1yi2K

0(
xi1�xi2

h
)K 0(

xi2�xi1
h

)T I( i1; i2 pairwise distinct)
�

+ N�2
(N�1)2 �

�
1
h

�2k+2
E
�
yi1yi2K

0(
xi1�xi2

h
)K 0(

xi2�xj2
h

)T I( i1; i2; j2 pairwise distinct)
�

+ N�2
(N�1)2 �

�
1
h

�2k+2
E
�
yi1yi2K

0(
xi1�xj1

h
)K 0(

xi2�xi1
h

)T I( i1; i2; j1 pairwise distinct)
�

+ (N�2)(N�3)
(N�1)2 �

�
1
h

�2k+2
E
�
yi1yi2K

0(
xi1�xj1

h
)K 0(

xi2�xj2
h

)T I( i1; i2; j1; j2 pairwise distinct)
�
:
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Using the law of iterated expectations, we rewrite

E
�
f̂ 0(K;h)(xi1)f̂

0
(K;h)(xi2)

Tyi1yi2I(i1 6= i2)
�

(A.4)

= N�2
(N�1)2 �

�
1
h

�2k+2
E

�
Ezj1

h
yi1K

0(
xi1�xj1

h
)
i
Ezj1

h
yi2K

0(
xi2�xj1

h
)
iT�

+

1
(N�1)2 �

�
1
h

�2k+2
E
�
yi2Ezi2

h
yi1K

0(
xi1�xi2

h
)K 0(

xi2�xi1
h

)T
i�
+

N�2
(N�1)2 �

�
1
h

�2k+2
E

�
Ezi2

h
yi1K

0(
xi1�xi2

h
)
i
Ezi2

h
yi2K

0(
xi2�xj2

h
)
iT�

+

N�2
(N�1)2 �

�
1
h

�2k+2
E

�
Ezi1

h
yi1K

0(
xi1�xj1

h
)
i
Ezi1

h
yi2K

0(
xi2�xi1

h
)
iT�

+

(N�2)(N�3)
(N�1)2 �

�
1
h

�2k+2
E
�
Ezi1

h
yi1K

0(
xi1�xj1

h
)
i�
E
�
Ezi2

h
yi2K

0(
xi2�xj2

h
)
i�T

;

where for brevity we omit terms such as I(i1 6= i2) in the terms of the expression.

Next follow details of derivation. Denote

A(K;h; xi) = Ezi

h
f̂ 0(K;h)(xi)� f 0(xi)

i
=

Z
K(u)(f 0(xi � uh)� f 0(xi))du

B(K;h; xi) =

Z
K 0(u)K 0(u)T (f(xi � uh)� f(xi)) du:

C(K;h; xi) = �
Z
K(u) [(gf)0(xi + uh)� (gf)0(xi)] du

D(K;h; xi) =

Z
K 0(u)K 0(�u)T [(gf)(xi + uh)� (gf)(xi)] du

c(xi) = �(gf)0(xi)

d(K; xi) = �
�
2(K)(gf)(xi)

�2(K) =

Z
K 0(u)K 0(u)Tdu

��2(K) =

Z
K 0(u)K 0(�u)Tdu; (under symmetry ��2(K) = ��2(K)).

Then write for terms in (A.4). First, Ezi
h�

1
h

�k+1
K 0(

xi�xj
h
)yi

i
= f 0(xi)yi + A(K;h; xi)yi .

The remaining conditional moments are

Ezj

h�
1
h

�k+1
K 0(

xi�xj
h
)yi

i
= c(xj) + C(K;h; xj) (A.5)

Ezi

h�
1
h

�k
K 0(

xj�xi
h
)K 0(

xi�xj
h
)Tyj

i
= d(K; xi) +D(K;h; xi): (A.6)
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Indeed, for (A.5)

Ezj

h�
1
h

�k+1
K 0(

xi�xj
h
)yi

i
=

�
1
h

�k+1 Z
K 0(

x�xj
h
)(gf)(x)dx

=
�
1
h

� Z
K 0(u)(gf)(xi + uh)dx (integration by parts)

= �(gf)0(xj)�
Z
K(u) [(gf)0(xj + uh)� (gf)0(xj)] du

For (A.6)

Ezi

h�
1
h

�k
K 0(

xj�xi
h
)K 0(

xi�xj
h
)Tyj

i
=

�
1
h

�k Z
g(x)K 0(x�xi

h
)K 0(xi�x

h
)Tf(x)dx c.o.v. x� xi = hu

=

Z
K 0(u)K 0(�u)T (gf)(xi + uh)dudy

=

Z
K 0(u)K 0(�u)T (gf)(xi)du+

Z
yK 0(u)K 0(�u)T [(gf)(xi + uh)� (gf)(xi)] du

= d(K; xi) +D(K;h; xi):

It is useful to note here that

E
h
Ezi

h�
1
h

�k+1
K 0(

xi�xj
h
)yi

ii
= E

h
Ezj

h�
1
h

�k+1
K 0(

xi�xj
h
)yi

ii
E [f 0(xi)yi + A(K;h; xi)yi] = E [c(xj) + C(K;h; xj)] :

Indeed it can easily be veri�ed that E(f 0(xi)yi) = E(c(xj)):

Using (A.1), (A.5), and (A.6) we can express (A.4) as

E
�
f̂ 0(K;h)(xi1)f̂

0
(K;h)(xi2)

Tyi1yi2

�
(A.7)

= N�2
(N�1)2E

h
(c(xi) + C(K;h; xi)) (c(xi) + C(K;h; xi))

T
i
+

1
(N�1)2

�
1
h

�k+2
E [d(K;xi)yi +D(K;h; xi)yi]

N�2
(N�1)2E

�
(c(xi) + C(K;h; xi)) (f

0(xi1)yi + A(K;h; xi)yi)
T
�
+

N�2
(N�1)2E

h
(f 0(xi)yi + A(K;h; xi)yi) (c(xi) + C(K;h; xi))

T
i

(N�2)(N�3)
(N�1)2 E [f 0(xi)yi + A(K;h; xi)yi]E [f

0(xi)yi + A(K;h; xi)yi]
T
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Combining (A.2), (A.3), and (A.7) yields,

E
�
�̂N(K;h)�̂N(K;h)

T
�

= 4
N(N�1)

�
1
h

�k+2
E
�
y2i f(xi)�2(K) +B(K;h; xi)y

2
i + d(K; xi)yi +D(K;h; xi)yi

�
+4 N�2

N(N�1)E((f
0(xi)yi + A(K;h; xi)yi)(f

0(xi)yi + A(K;h; xi)yi)
T )

+4 N�2
N(N�1)E

h
(c(xi) + C(K;h; xi)) (c(xi) + C(K;h; xi))

T
i

+4 N�2
N(N�1)E

�
(c(xi) + C(K;h; xi)) (f

0(xi)yi + A(K;h; xi)yi)
T
�

+4 N�2
N(N�1)E

h
(f 0(xi)yi + A(K;h; xi)yi) (c(xi) + C(K;h; xi))

T
i

+ (N�2)(N�3)
N(N�1)

�
E�̂N(K;h)

��
E�̂N(K;h)

�T
:

The �nal expression (using repeatedly Assumptions 3-5 to show convergence to zero of

expectation of terms involving quantities denoted in capitals) is

E
�
�̂N(K;h)�̂N(K;h)

T
�

= 4
N2

�
1
h

�k+2 �
E
�
y2i f(xi)�2(K) + yi(gf)(xi)�

�
2(K)

�
+ o(1)

�
+4 1

N

�
E(y2i (f

0(xi)(f
0(xi)

T + (gf)0(xi)(gf)
0(xi)

T + yi(gf)
0(xi)(f

0(xi)
T + yif

0(xi)(gf)
0(xi)

T
�
+ o(1))

+ (N�2)(N�3)
N(N�1)

�
E�̂N(K;h)

��
E�̂N(K;h)

�T
:

Alternatively, we can write the variance expression in the form given in the statement of

the Lemma.

Remark. For N � V ar(�̂N(K;h)) to converge, we require Nhk+2 ! C with C 2 (0;1):

Notice that indeed, given Nhk+2 ! 1 (regardless of whether we assume the kernel to be

symmetric),

NV ar(�̂N(K;h))

! 4
�
E
�
c(xi)c(xi)

T
�
+ E

�
f 0(xi)c(xi)

T + c(xi)f
0(xi)

T )yi + y
2
i f

0(xi)f
0(xi)

T
�	

= 4
�
E((g0(xi)f(x)� (yi � g(xi)f 0(xi))(g0(xi)f(x)� (yi � g(xi)f 0(xi))T

	
� 4�0�T0

= �� as in PSS 1989.

Proof. Theorem 1.
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From Lemma 1 it follows that the variance has two leading parts, one that converges

to �2� at a parametric rate, O(N�1); requiring Nhk+2 ! 1; when this condition on the

rate of the bandwidth does not hold, the variance converges at the rate O(N�2h�(k+2)) to

�1�: The squared bias converges at the rate O(h2v):

In cases (a,b)v. and (c)iii. the rate of the squared bias dominates the rates for both lead-

ing terms in the variance. By standard arguments (Chebyshev�s inequality) this situation

clearly results in convergence in probability to B(K) as stated in the Theorem.

In cases (a)iii. and iv. the part of the variance with the parametric rate dominates

(with or without bias), Nhk+2 ! 1; and the results for the moments follow; similarly

moment conditions in (a,b) ii. hold for the �nite non-zero C : Nhk+2 ! C. For the case

Nhk+2 !1 Theorem 3.3 in PSS applies. We adapt the proof of normality in Theorem 3.1

in PSS with a minor change: we accommodate a possible non-symmetric kernel.

To accommodate a non-symmetric kernel we rede�ne pN(zi; zj) (de�ned in PSS, (3.11))

as

pN(zi; zj) = �
�
1

h

�k+1 �
K 0
�
xi � xj
h

�
yi +K

0
�
xj � xi
h

�
yj

�
; (A.8)

then the tN(zi) de�ned by PSS (3.15) changes to

tN(zi) =

Z
K(u) [(gf)0(xi + uh)� (gf)0(xi)] du� yi

Z
K(�u) [f 0(xi + uh)� f 0(xi)] du:

The rest of the asymptotic normality argument for U-statistics follows through noting that

it is now ÛN as de�ned in PSS (3.9) with the new pN(zi; zj) from (A.8) for which PSS,

Lemma 3.1 holds.

When Nhk+2 ! 0 as in cases (a,b)i. and (c)i. and ii. the variance converges with the

non-parametric rate, Nh
k+2
2 ; to �1�. If the degree of smoothness is low, v < k+2

2
; then

regardless of the order of the kernel a parametric rate cannot be obtained.

Lemma 2. Under the assumptions of Theorem 1 the covariance between �̂N(Ks1 ; hs1) and

�̂N(Ks2 ; hs2); �s1s2 ; is given by

�s1s2 � (�1�(Ks1 ; Ks2 ; hs1=hs2) + o(1))N
�2h�(k+1)s2

h�1s1 + (�2� + o(1))N
�1 +O(N�2)
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where

�1�(Ks1 ; Ks2 ; hs1=hs2)

= 4E
�
y2f(xi)�2(Ks1 ; Ks2 ; hs1=hs2) + �

�
2(Ks1 ; Ks2 ; hs1=hs2)(gf)(xi)yi

�
with

�2(Ks1 ; Ks2 ; hs1=hs2) =

Z
K 0
s1
(u)K 0

s2
(u
hs1
hs2
)Tdu;

��2(Ks1 ; Ks2 ; hs1=hs2) =

Z
K 0
s1
(u)K 0

s2
(�uhs1

hs2
)Tdu:

Proof. The proof is similar to the proof of Lemma 1, the only di¤erence is that the

di¤erent kernels and bandwidths in each term have to be considered.

Speci�cally, using 1; 2 to replace s1; s2 in the derivation, we get for the analogue of

(A.3),

E
�
f̂ 0(K1;h1)

(xi)f̂
0
(K2;h2)

(xi)
Ty2i

�
(A.9)

=
�

1
N�1

�2
E

8<:Ezi
0@y2i

"X
j 6=i

�
1
h1

�k+1
K 0
1(
xi�xj
h1
)

#"X
j 6=i

�
1
h2
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K 0
2(
xi�xj
h2
)

#T1A9=;
= 1

N�1 �
�

1
h1h2

�k+1
E
h
y2iEzi

�
K 0
1(
xi�xj
h1
)K 0

2(
xi�xj
h2
)T I( i 6= j)
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+

N�2
N�1 �

�
1

h1h2

�k+1
E
h
y2iEzi

�
K 0
1(
xi�xj1
h1

)K 0
2(
xi�xj2
h2

)T I( i; j1; j2 pairwise distinct)
�i

= 1
N�1 �

�
1
h1

�k+1 1
h2
E

�
y2i

Z
K 0
1(u)K

0
2(u
h1
h2
)Tf(xi � uh)du

�
+

N�2
N�1

�
1

h1h2

�k+1
E

�
Ezi

�
yiK

0
1(
xi�xj1
h1

)
�
Ezi

�
yiK

0
2(
xi�xj2
h2

)
�T
I( i; j1; j2 pairwise distinct)

�
= 1

N�1 �
�
1
h1

�k+1 1
h2

�
Ey2i f(xi)�2(K1; K2; h1=h2) + o(1)

�
+

N�2
N�1 �

�
E(f 0(xi)yi)(f

0(xi)yi)
T + o(1)

�
;
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and for the analogue of (A.7)

E
�
f̂ 0(K1;h1)

(xi1)f̂
0
(K2;h2)

(xi2)
Tyi1yi2I(i1 6= i2)

�
(A.10)

= N�2
(N�1)2E

h
(�(gf)0(xi) + C1) (�(gf 0)(xi) + C2)T

i
+

1
(N�1)2

�
1
h1

�k+1 1
h2
E

�Z
K 0
1(u)K

0
2(�u

h1
h2
)Tdu(gf)(xi)yi +Dyi

�
N�2
(N�1)2E

�
(�(gf)0(xi) + C1) (f 0(xi1)yi + A2yi)T

�
+

N�2
(N�1)2E

h
(f 0(xi)yi + A1yi) (�(gf)0(xi) + C2)T

i
(N�2)(N�3)
(N�1)2 E [f 0(xi)yi + A1yi]E [f

0(xi)yi + A2yi]
T
;

where the terms denoted in capital letters are similar to the ones in Lemma 1 and are

subscripted by the corresponding kernel/bandwidth number; they similarly contribute only

to the relatively lower order terms of the expectation.

Combining we get

�s1s2 =
4

N(N�1)

�
1
hs2

�k+1
1
hs1

�
E
�
y2i f(xi)�2(Ks1 ; Ks2 ; hs1=hs2)

�
+ o(1)

�
+4 1

N(N�1)

�
1
hs2

�k+1
1
hs1
(E [��2(Ks1 ; Ks2;hs1=hs2 ; xi)(gf)(xi)yi] + o(1))

+4 N�2
N(N�1)

�
E((f 0(xi)yi)(f

0(xi)yi)
T ) + o(1)

�
+4 N�2

N(N�1)

�
E
h
(�(gf)0(xi)) (�(gf)0(xi))T

i
+ o(1)

�
+4 N�2

N(N�1)
�
E
�
(�(gf)0(xi)) (f 0(xi)yi)T

�
+ o(1)

�
+4 N�2

N(N�1)

�
E
h
(f 0(xi)yi) (�(gf)0(xi))T

i
+ o(1)

�
+ �4N+6
N(N�1)E

�
�̂N(Ks1 ; hs1)

�
E
�
�̂N(Ks2 ; hs2)

�T
:

by comparing the orders of the terms the result follows.

Proof. Theorem 2. The limit covariances are provided by Lemma 2; the covariances

can only converge at di¤erent rates if the bandwidths converge at di¤erent rates.

The expression for the covariance can also be written by interchanging s1and s2: Thus
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without any loss of generality we can assume that hs1 = o(hs2): Note that then

�2 =

Z
K 0
s1
(u)K 0

s2
(u
hs1
hs2
)du

= K 0
s2
(0)

Z
K 0
s1
(u)du+

Z
K 00
s2
(~u)K 0

s1
(u)udu � hs1

hs2

=
hs1
hs2
O(1)

where ~u lies between 0 and u: Similarly ��2 =
hs1
hs2
O(1): Only two cases of di¤erent rates

are possible here: (a) a parametric rate for s1 and a non-parametric for s2; and (b) non-

parametric (di¤erent) rates for both.

Consider case (a): Nhk+2s1
! 0;Nhk+2s2

!1: Then

Cov(Nh
k+2
2

s1 �̂N(Ks1 ; hs1);
p
N�̂N(Ks2 ; hs2)) = N

3
2h

k+2
2

s1 [N
�2h�(k+2)s2

O(1) +N�1O(1)]

= O(N
1
2h

k+2
2

s1 N
�1h�(k+2)s2

) +O(N
1
2h

k+2
2

s1 ) = o(1):

For case (b): Nhk+2s1
! 0;Nhk+2s2

! 0 we get

Cov(Nh
k+2
2

s1 �̂N(Ks1 ; hs1); Nh
k+2
2

s2 �̂N(Ks2 ; hs2)) = N2h
k+2
2

s1 h
k+2
2

s2 [N
�2h�(k+2)s2

O(1) +N�1O(1)]

= O(h
k+2
2

s1 h
� k+2

2
s2 ) +O(Nhk+2s2

) = o(1):
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Table A.1: RMSE of the Density weighted ADE estimators, N=1000

Model (s,s) Model (s,m) Model (m,m)

Bandw/Kernel K2 K4 K2 K4 K2 K4

h0 0.0156 0.0122 0.0495 0.0476 0.1332 0.1296

h1 0.0059 0.0054 0.0467 0.0449 0.1464 0.1458

h2 0.0053 0.0045 0.0500 0.0449 0.1585 0.1548

h3 = h
gcv 0.0062 0.0046 0.0544 0.0488 0.1700 0.1680

h4 0.0088 0.0070 0.0618 0.0578 0.1844 0.1877

Combined

smallest: h0 0.0105 0.0474 0.1329

smallest: h1 0.0051 0.0470 0.1502

Model (s,c) Model (s,d) Model (c,d)

Bandw/Kernel K2 K4 K2 K4 K2 K4

h0 0.0270 0.0258 0.0690 0.0625 0.0644 0.0754

h1 0.0255 0.0237 0.0443 0.0386 0.0354 0.0293

h2 0.0260 0.0240 0.0352 0.0328 0.0302 0.0322

h3 = h
gcv 0.0271 0.0248 0.0255 0.0282 0.0257 0.0278

h4 0.0300 0.0281 0.0176 0.0268 0.0239 0.0271

Combined

smallest: h0 0.0245 0.0594 0.0613

smallest: h1 0.0246 0.0366 0.0281
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Table A.1: RMSE of the Density weighted ADE estimators, N=2000

Model (s,s) Model (s,m) Model (m,m)

Bandw/Kernel K2 K4 K2 K4 K2 K4

h0 0.0124 0.0087 0.0390 0.0377 0.1193 0.1147

h1 0.0043 0.0037 0.0414 0.0399 0.1324 0.1418

h2 0.0037 0.0031 0.0457 0.0428 0.1467 0.1493

h3 = h
gcv 0.0045 0.0033 0.0505 0.0452 0.1600 0.1643

h4 0.0071 0.0060 0.0575 0.0543 0.1745 0.1879

Combined

smallest: h0 0.0086 0.0365 0.1165

smallest: h1 0.0037 0.0409 0.1388

Model (s,c) Model (s,d) Model (c,d)

Bandw/Kernel K2 K4 K2 K4 K2 K4

h0 0.0293 0.0239 0.0670 0.0749 0.0661 0.0651

h1 0.0245 0.0233 0.0470 0.0431 0.0405 0.0329

h2 0.0252 0.0232 0.0407 0.0399 0.0328 0.0353

h3 = h
gcv 0.0260 0.0240 0.0305 0.0337 0.0254 0.0296

h4 0.0284 0.0271 0.0195 0.0274 0.0217 0.0253

Combined

smallest: h0 0.0244 0.0676 0.0617

smallest: h1 0.0238 0.0422 0.0337
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Table A.2: Comparison RMSE of the Density weighted ADE estimators

RMSE(comb; h0)= RMSE(comb; h1)=

RMSE(K2; h4) RMSE(K2; h4)

Model N = 1000 N = 2000 N = 1000 N = 2000

(s,s) 2.333 2.774 1.133 1.194

(s,m) 1.056 0.853 1.047 0.956

(m,m) 0.859 0.780 0.970 0.930

(s,c) 1.021 1.052 1.025 1.026

(s,d) 1.811 1.694 1.116 1.058

(c,d) 1.904 1.748 0.873 0.955
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Table A.3: Tobit Model: RMSE Single Index parameter estimates

Model (s,s) Model (m,m) Model (c,d)

Unit PSS Polar Unit PSS Polar Unit PSS Polar

N = 1000

Parametric: MLE 0.052 0.026 0.026 0.094 0.047 0.047 0.056 0.028 0.028

Nonparametric: ADE

K2 h0 0.698 0.227 0.204 3.081 0.472 0.520 5.157 0.427 0.343

h1 0.140 0.066 0.066 1.042 0.242 0.309 8.928 0.304 0.363

h2 0.106 0.052 0.052 0.455 0.180 0.175 0.768 0.254 0.246

h3 � hgcv 0.094 0.047 0.047 0.340 0.156 0.153 0.656 0.231 0.224

h4 0.099 0.050 0.050 0.339 0.161 0.158 0.725 0.253 0.246

K4 h0 0.372 0.137 0.133 2.481 0.342 0.434 2.348 0.534 0.458

h1 0.119 0.057 0.057 0.737 0.201 0.192 0.660 0.229 0.218

h2 0.095 0.047 0.046 0.422 0.173 0.169 0.566 0.192 0.185

h3 � hgcv 0.090 0.045 0.044 0.418 0.188 0.183 0.738 0.252 0.244

h4 0.107 0.053 0.053 0.376 0.174 0.170 1.125 0.345 0.330

Combined

smallest: h0 0.221 0.103 0.101 2.233 0.425 0.376 1.481 0.442 0.391

smallest: h1 0.103 0.051 0.050 0.529 0.196 0.189 0.771 0.260 0.252
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Table A.3: Tobit Model: RMSE Single Index parameter estimates (Cont�d)

Model (s,s) Model (m,m) Model (c,d)

Unit PSS Polar Unit PSS Polar Unit PSS Polar

N = 2000

Parametric: MLE 0.035 0.018 0.018 0.063 0.032 0.032 0.040 0.020 0.020

Nonparametric: ADE

K2 h0 0.384 0.148 0.144 10.47 0.409 0.400 3.989 0.412 0.367

h1 0.089 0.043 0.042 0.452 0.190 0.185 1.115 0.324 0.310

h2 0.062 0.031 0.031 0.317 0.150 0.148 0.906 0.293 0.282

h3 � hgcv 0.059 0.030 0.030 0.270 0.131 0.128 0.708 0.248 0.241

h4 0.067 0.034 0.034 0.277 0.134 0.131 0.640 0.228 0.222

K4 h0 0.212 0.093 0.092 2.064 0.263 0.357 5.263 0.400 0.427

h1 0.072 0.035 0.035 0.427 0.151 0.146 0.727 0.238 0.229

h2 0.060 0.030 0.030 0.299 0.127 0.125 0.646 0.214 0.207

h3 � hgcv 0.056 0.028 0.028 0.281 0.134 0.132 0.773 0.266 0.258

h4 0.072 0.036 0.036 0.281 0.128 0.126 1.037 0.327 0.314

Combined

smallest: h0 0.170 0.079 0.079 5.743 0.269 0.333 4.927 0.379 0.351

smallest: h1 0.064 0.032 0.033 0.382 0.158 0.154 0.773 0.287 0.277




