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Abstract
In this paper, we study a particular uneven-aged forest stand management pattern that
is often advocated in practice. The forest structure under consideration is similar to
a normalized forest à la Faustmann, with the following di¤erence: rather than being
single aged, each forest tract contains trees of two age classes so that it is submitted
to a form of selective cutting. Each harvest involves all of the older trees and only
a fraction of the younger ones; hence the name mixed rotation. Trees left standing
at harvest help stimulate natural regeneration and improve various environmental and
amenity characteristics of the forest. We model this e¤ect by using a cost function that
varies with respect to the harvest rate of younger trees. We derive the properties that
this cost function must exhibit in order some form of mixed rotation to be superior to
the conventional single rotation à la Faustmann; we also characterize the mixed rotation
in terms of duration and the harvest rate of younger trees, and we compare its properties
with Faustman�s rule.

key words: forest management; Faustmann�s rule; normal forest; synchronized forest;
uneven-aged lots; amenity value; mixed rotation; selective cutting.

J.E.L. classi�cation: Q00; Q23; D29.

Résumé
Nous étudions un cas particulier d�aménagement forestier inéquien qui est recommandé
dans la pratique actuelle. La structure de la forêt est similaire à une forêt normalisée à la
Faustmann avec la di¤érence suivante: au lieu d�être équien, chaque lot comporte deux
classes d�âge; il est soumis à une forme de coupe sélective. A chaque récolte, on coupe
tous les arbres les plus vieux ainsi qu�une fraction des arbres les plus jeunes; d�où le nom
de rotation mixte. Les arbres non coupés aident la régénération naturelle et améliorent
diverses caractéristiques environnementales et esthétiques de la forêt. Nous modélisons
cet e¤et en utilisant une fonction de coût qui varie avec le taux de récolte des arbres
jeunes. Nous dérivons les propriétés que cette fonction de coût doit satisfaire pour que la
rotation mixte soit préférable à la rotation standard à la Faustmann; nous caractérisons
la rotation mixte en termes de durée et de taux de récolte des jeunes arbres, que nous
comparons avec le cas de Faustmann.

mots-clés: aménagement forestier; règle de Faustmann; forêt normalisée; forêt synchro-
nisée; forêt inéquienne; aménités; rotation mixte; coupe sélective.

Classi�cation J.E.L.: Q00; Q23; D29.



1 Introduction

One traditional question of forestry management is the optimal harvest time. Faustmann

(1849) addressed the question by de�ning the optimal age at which trees should be cut

as the age when the net cumulated discounted value of an in�nite sequence of harvests

is maximum if all harvests occur at the same age.

It is cheaper to clear cut a patch of forest than to deal with each tree individually.

Consequently Faustmann�s rule, although it can be determined for any individual tree,

is generally understood to apply to whole cohorts. This leads to the notion of a normal,

or �synchronized�, forest which is a forest divided into as many equal size even-aged lots

as there are time periods between the time a new crop is established and the time it is

harvested. More generally a forest territory should be divided into several such normal

forests. In a normal forest, each lot is periodically clear cut. The number of lots is equal

to the optimal rotation age, which is, according to Faustmann�s rule, the age at which

growth has slowed down to such a level that the increase in the timber value of standing

trees over an additional period is equal to the sum of the interest that would be earned

on the crop and on the site value if these amounts were invested for the same period.

Faustmann�s analysis and the normal forest have been central to forestry research

and practice, although a general proof that the normal forest is indeed the optimal form

of organization in the long run has been elusive (Mitra and Wan, 1986; Heaps, 1984;

Salo and Tahvonen, 2002, 2003; Uusivuori and Kuuluvainen, 2005). In his analysis,

Faustmann assumes that the unit price of timber and the unit cost of harvesting are

known and constant. The above authors generalize the model by assuming that the net

instantaneous utility from harvest is strictly concave. However while Heaps speci�ed

continuity in both time (the harvest age) and space (plot size) and was not able to

prove that the normal forest was optimal, Mitra and Wan, as well as Salo-Tahvonen and

Uusivuori-Kuuluvainen studied models with continuous space and discrete time. They

all found that cyclical stationary solutions may arise, that is to say optimal harvest

schemes that converge to a steady state where the forest is characterized by an age-class



structure that is not a normal forest. However Salo and Tahvonen showed that the non-

cyclical stationary solution (the normal forest) is optimal when the time unit is allowed

to become very small. In this paper we make use of that result to focus on the normal

forest.

Despite the attention devoted to the optimality of the normal forest as a mode of

management and organization, the literature is silent about the size of even-aged tracts

in a normal forest. For example in the above papers if xit represents the land area covered

with trees of age i at time t, then a forest is normal if and only if xit = xjt 8 i; j; t;

with i; j 2
�
0; 1; 2; :::; T F

	
; where T F is Faustmann rotation and trees are necessarily

harvested when and only when they reach age T F . This formalization is compatible

with tract surfaces of several hectares or may correspond to a single tree, or fraction of

tree for that matter, per tract. It is also compatible with xit being composed of spatially

discontinuous areas. Yet questioning the normal forest as a management practice stems

more from the fact that it involves sizeable stands of even-aged trees and clear cutting,

than from the fact that all trees are cut at the same age, which is compatible with

selective cutting. Economies of scale at the level of the harvest unit play a major role

in shaping the normal forest and should not be assumed away in considering alternative

forest management practices. In this paper the focus is not on scale but on the costs

and bene�ts of departing from the normal forest by not cutting all trees at the same

age. However the model is formulated in such a way that forest tracts are scale e¢ cient.

Faustmann also assumes that the forest and the forest land do not produce any

other form of value than revenues from timber harvest. Following Hartman. (1976) and

culminating in the present with Uusivuori and Kuuluvainen (2005), a rich theoretical

literature focuses on forests that provide both timber and amenities.

For Bowes and Krutilla (1989) the amenity values provided by a forest depend on

the mix of stand ages. As noted by Uusivuori and Kuuluvainen (2005), this makes

optimal decisions dependent on the entire forest structure, a complexity that imposes

severe limits on both analytical and numerical analysis. In a model where each age class

contributes to amenity additively and separately, Uusivuori and Kuuluvainen show that
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a noncyclical steady state solution may imply old-growth preservation combined with

timber harvesting. However modelling the environmental and amenity contributions of

age classes fails to account for a major cost of timber exploitation in a normal forest: the

environmental, amenity, and silvicultural cost of clear-cutting entire, usually even-aged,

stands. As already mentioned, age-class models are silent about the spatial distribution

of trees; all trees in a particular age class may be felled without any clear cutting

to take place. Although it is often implicitly assumed that age classes coincide with

tree stands (see, e.g. note 2 in Uusivuori and Kuuluvainen), the size of the stand is

immaterial in such models. Consequently they are powerless when it comes to evaluate

the environmental, amenity, and silvicultural costs or bene�ts of mitigating the impact

of clear-cutting in an otherwise normal forest. To our knowledge there is no theoretical

paper that has addressed that issue.

Yet forest managers advocate new practices that take such aspects of forestry into

account. Instead of clear cutting, various forms of selective harvesting and tree retention

are often recommended. This implies forests that may called normalized in the sense

that they are composed of tracts of identical surface exhibiting identical age structures

at harvest time, but di¤er from the conventional normalized forest in that trees are not

necessarily cut at the same age determined by Faustmann�s rule and in that tracts may

not be even-aged.

In this paper, we study a particular uneven-aged stand model that is often advocated

in practice. Under that management rule the forest structure is similar to a normalized

forest, with the following di¤erence: rather than being even-aged, each forest tract

combines trees of at most two age classes. Each time a harvest takes place on the tract,

it involves all of the older trees and only a fraction of the younger ones; hence the name

of mixed rotation. We derive the harvest rate and rotation cycle that are optimal for

that particular structure.

Besides its empirical relevance, this structure has rich but manageable theoretical

implications. In fact Wan (1994), as well as Salo and Tahvonen (2002), also used a

forest management structure involving two age classes. However, the age of the trees in
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each class was not a choice variable: by assumption trees could live at most two periods

and the decision maker had to decide how many trees of the �rst age class were to be cut

and how many were allowed to reach the second age class before being cut. Here the age

at which trees are cut can be chosen provided the constraint on the age structure is met.

The focus of Wan and of Salo and Tahvonen was also di¤erent: they were interested

in the existence of optimal cycles and the optimality of reaching the long-run normal

forest, as discussed above.

After each harvest, the remaining uncut trees help stimulate the natural regener-

ation of new trees, which is less expensive than seedling plantation, and they protect

newly established seedlings, whether from natural origin or planted. Besides helping

regeneration, leaving a certain proportion of grown trees standing at harvest time until

the next harvest has several bene�cial e¤ects. It reduces soil damage thus improving

sustainability; it improves water retention, reduces the trauma of timber exploitation to

wild life, and, generally increases amenity value and the social acceptability of timber

exploitation. More generally, it is also argued that this forest structure is environmen-

tally and aesthetically more acceptable than the normal forest and its ugly clear-cut

patches. The proponents of such tree retention practices claim that uneven-aged forest

tracts are better adapted to environmental and social objectives, and that this form

of selective harvesting also preserves genetic resources and the diverse composition of

forests (Bergeron et al., 1999), as well as it permits greater carbon sequestration.

We model these e¤ects by introducing a function that allows net revenues to depend

on various forest management costs, and on various bene�ts, not necessarily commercial,

that are also part of forest value. Analyses in the tradition of Faustmann often involve

�xed costs occurring at harvest time (regeneration costs for example); they are called

�xed because they do not depend on harvest quantity. The function introduced in our

model to take account of bene�ts or costs that do not depend on the harvest rate will

be called net cost function in order to facilitate comparisons with traditional models,

although it may be negative if bene�ts exceed costs, or positive in the opposite case.

Although it enters the objective function in the same way as �xed costs do in Faust-
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mann�s analysis, the net cost function introduced in this paper depends on the forest

management practice under study. Precisely we model the net cost as a function of the

proportion of trees left standing when a stand is harvested. The higher the proportion

of trees left standing, the lower regeneration costs and the higher the various amenity

bene�ts just mentioned. That proportion will be controlled by the decision maker in the

model described below.

Given the tree volume growth function, we derive the properties that the net cost

function must exhibit in order some form of mixed rotation or double rotation to be

superior to the conventional single rotation à la Faustmann. Mixed and double rotations

involve choosing the proportion of younger trees left standing at each harvest; and

choosing the periodicity of harvests, the rotation.

We �nd that the normal forest à la Faustmann is the optimal form of management

when costs and amenity values do not depend on the proportion of trees allowed to grow

over a second rotation. Also, while the basic intuition explaining Faustmann�s rotation is

preserved, where the opportunity cost of bare land is a component of the cost of waiting,

we �nd that the opportunity cost of bare land is augmented by the opportunity cost

of the trees left standing at harvest when the proportion of trees cut at each harvest is

below 100%.

In general, the higher the discount rate, the further the second-order condition di¤ers

from strict concavity of the growth function at harvest age. This is because the cost

of delaying harvest reduces the bene�t from growth even if marginal tree growth is not

diminishing. When some trees are left standing at harvest to be cut down at the next

harvest, this consideration must be incorporated in choosing the harvest age of younger

trees as well as the implied harvest age of older trees.

The optimal proportion of trees cut at harvest instead of being allowed to grow further

until next harvest is shown to depend on the relative weight of the bene�cial externality

brought by older trees. It is minimum at zero when the bene�cial externality weights

high. This implies a radical departure from clear cutting as only half the trees on any

given forest tract are cut down at harvest. In contrast when the bene�cial externality
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does not weigh much, clear cutting and management à la Faustmann are optimal.

Section 2 describes the structure of the theoretical model and establishes notations.

The problem is solved and results are given in Section 3. We conclude with Section 4.

2 Theoretical Model

2.1 Problem Structure and Notation

We consider a forest composed of many identical territories, each made up of T tracts

of equal size. Each such tract is covered with a forest stand composed of two age classes

of trees. The �rst class contains n1 younger trees; the second class is made up of n2

trees that are older than the �rst ones by T years. On each tract harvest occurs every T

years and is partial: all older trees are harvested while only a proportion m, 0 � m � 1,

of the younger age class is cut. Thus at harvest the n1 younger trees are T years old

and the n2 older trees are 2T years old. The proportion (1�m) of younger trees left

standing makes up the n2 trees that are allowed to grow further to be cut at the next

harvest, when they are 2T years old. The total number n of trees on any tract is given

and such that n = n1+ n2. The forest is organized in such a way that one harvest takes

place on one of the T identical stands in each territory every year.

We further assume that the same proportion m is maintained on all tracts. It follows

that the forest territory under consideration is in a steady state and produces a steady

�ow of wood with a rotation of T . However, this is not a normal forest in the usual sense

because not all trees are cut at the same age, except in the special case where m = 1.

The assumption that the forest is big enough to be composed of many identical

T tracts territories is a convenient way to abstain from a discussion of overall forest

size while retaining the notion of optimal establishment size. Suppose unit harvest costs

depend on size; then tract size, hence territory size, a¤ect pro�tability. Loosely speaking,

the steady state forest should then be analogous to an industry composed of �rms of

optimum size: in the long run it is divided into identical territories of optimum size. We

will focus on one such territory. Moreover, since all T tracts in the territory are identical

except for tree age (hence harvest date), the analysis will highlight one particular tract,
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mimicking Faustmann�s approach in that sense. Note that the assumption of optimal

territory size and the analogy with long run industry equilibrium does not imply that

land rents are zero. A good analysis of endogenous commercial forest size when the land

area is e¤ectively in�nite is provided by Sahashi (2002).

Let v(t) be the wood volume of a tree of age t. For most species that function has

the following properties, which we assume here:

Assumption 1: The tree volume function.

a. v(t) = 0 for 0 � t � t0:

b. v(t) is non negative and continuously di¤erentiable on R+.

c. There are two positive values t1 and t2 with t0 � t1 < t2, such that the marginal

rate of growth of v(t) is positive and increasing for t0 � t � t1 and is positive and

decreasing for t1 < t � t2. For t > t2; the marginal rate is negative or null; at t2;

the tree reaches its maximum timber volume.

The existence of steady states de�ned in terms of T and m is easy to establish by

construction. While this does not mean that convergence toward the appropriate steady

state is a property of the optimal dynamic management policy for any initial situation,

the analysis of Salo and Tahvonen (2002) indicates this is likely to be the case when t is

treated as a continuous variable. Thus we focus on the steady state.

The total stand timber volume, nS, is the sum of the volumes in each age class.

When the younger trees have age t, t � T , so that older ones are t+ T old,

nS = n1v(t) + n2v(t+ T ).

At harvest the forest operator cuts all trees aged 2T and only a fraction m of trees aged

T . Younger trees left standing at harvest become the older trees to be cut at the next

harvest. Therefore, n2 = n1(1�m) so n2 � n1. Since a certain proportion of trees are

left standing at harvest, the harvest volume is smaller than the total timber volume on

the stand:

nH = mn1v(T ) + n1(1�m)v(2T ): (1)
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where H is the average harvest volume, that is to say the ratio of the total harvest

volume on the typical forest tract, over the total number of trees on that tract.1 The

number of trees cut (and regenerated) at each rotation is mn1 + (1�m)n1 = n1 for all

values of m. But since n1 + n2 = n and n2 = n1(1�m),

n1 (m;n) =
1

2�mn ; n2 (m;n) =
1�m
2�mn: (2)

Thus choosing the proportion m determines the steady state proportion of trees

belonging to each age class and the proportion of trees harvested and left standing at

each harvest. Accordingly, for any tract size measured by n, we can rewrite H and S as

functions of the rotation age and the proportion of younger trees cut at each harvest:

H (T;m;n) =
m

2�mv(T ) +
1�m
2�mv(2T ): (3)

S (T;m;n) =
1

2�mv(T ) +
1�m
2�mv(2T ) (4)

2.2 Forest Costs and Values

Forests bene�ts other than harvest revenues are often reduced by wood exploitation. We

model them as part of forestry costs. Thus forest exploitation involves a variety of costs:

administration, harvest, regeneration, transportation, forest maintenance, environmen-

tal costs, amenity costs, etc....2 We assume that these costs are determined by three

elements. The �rst one is scale; assuming that tree density is not a choice variable, the

number of trees per tract de�nes territory size. As the focus of our paper is mixed or

multiple rotations, not optimal scale, we use a model under which scale is optimized,

either because unit cost is independent of scale, or because the number of trees per

tract is set at its cost minimizing leveln�, an optimum level which is independent of the

proportion of younger and older trees (see below).

Second the harvest age, T or 2T . We do not assume that T a¤ects costs directly, but

1Trees left standing at harvest are nonetheless included in establishing the ratio.
2Some of these costs are incurred irrespective of forest management practices. Many administrative

costs fall into that category. They are usually ignored as �xed costs in the marginal analysis of forest
management decisions and we do so here.
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since costs are incurred at harvest time only3, the choice of T determines the frequency

at which they must be born. Traditionally planting and regeneration costs have been

modelled that way and have been called �xed cost because they do not depend on

volume.

Third, as we have explained, one key argument in favor of mixed/double rotations

is that such practices help regeneration and reduce environmental damage as well as

amenity loss, thus reducing the costs associated with each harvest relative to costs when

clear cutting. We assume that the total cost incurred at each harvest is higher, the

higher m; that is the smaller the proportion of trees allowed to stay uncut at harvest.

According to the above hypotheses the total cost incurred at each steady state harvest

of nH (T;m;n) on a typical tract may be written as ng (n)C (m), where g (n)C (m) is

the unit cost. The function g (n) is an index describing the e¤ect of scale on unit costs:

it reaches a minimum at n�. At any scale, C (m) > 0 and C 0 (m) � 0. We assume

long-run cost e¢ ciency, whether due to perfect competition or good planning. This

requires that the long-run size of the typical forest tract minimizes total industry cost:

n = argminn
N
nT
ng (n)C (m) where N is the exogenous total number of trees in the

whole forest, so that N
nT
is the number of tracts harvested at any given date (one tract

in each territory). This implies n = n�.

Thus the total cost incurred at each steady state harvest of n�H (T;m;n�) on a

typical forest tract is n�g (n�)C (m). Let us further normalize g such that g (n�) = 1

adjusting C accordingly; then C (m) can be interpreted as the unit cost4 associated with

each typical harvest on an optimum size forest tract.

3Many costs and bene�ts occur as �ows over the rotation period. In particular leaving a certain
proportion of trees uncut at each harvest a¤ect the stand and the whole forest over successive periods
until the next harvest. In a non cyclical steady state, the bene�ts and costs occuring between harvests
can be cumulated and treated as if they occured at harvest time.

4By this de�nition, the unit cost is the total cost incurred at harvest divided by the number trees
on the forest tract, whatever the proportion of these trees that is cut at harvest.
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3 The mixed rotation Problem

We want to compare steady state forest management practices characterized by two

parameters, m and T . According to (2) such steady states imply well de�ned propor-

tions of trees of each age categories; these proportions depend on m only. Comparing

alternative management practices requires not only the comparison of net cumulative

revenues under alternative practices but requires also accounting for di¤erences in the

opportunity cost of the stands implied by each alternative. In the traditional Faustmann

analysis the stand is entirely clear cut at each harvest so that there are no di¤erences in

stand opportunity cost at di¤erent rotation values. Here steady state forest stands di¤er

according tom and these di¤erences must be accounted for in choosing the optimal rota-

tion. This requires evaluating the present discounted value of the stream of net harvest

revenues over an in�nite number of rotations, given the steady state levels of n1 (m) and

n2 (m), minus the cost of the steady state stand n1 (m;n) v (T )P + n2 (m;n) v (2T )P

where P is the price of wood, assumed constant. Thus the objective function is

1X
k=0

e�krT [Pn�H (T;m;n�)� n�C(m)]� n1 (m;n�) v (T )P � n2 (m;n�) v (2T )P (5)

where k is the harvest index, (k = 0; :::;1) and r the real interest rate. Using (1) ; (2) ;

(4) and dividing by n�, the objective function can be written as

W (T;m) =
1

1� e�rT

�
P

�
m� 1 + e�rT

2�m v(T ) +
1�m
2�me

�rTv(2T )

�
� C(m)

�
(6)

or

W (T;m) =
1

1� e�rT fPH (T;m)� C(m)g � S (T;m)P (7)

According to this formulation of the objective function, revenues are generated, and

net costs are paid, at the beginning of each rotation. Values are discounted to date zero.

At date zero the steady state stand is acquired and the �rst steady state harvest follows

immediately (k = 0). The next harvest occurs after a period of T time units, and so on.

The objective function gives, on a per tree basis, the sum of the discounted values of all

future harvests, net of the costs associated with each one, and net of the value of the
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stand just before the �rst harvest. Thus it can be interpreted as the value of bare land

for the surface unit corresponding to one tree. In the Faustmann tradition, it does not

account for the transition from one steady state to another made necessary in practice

by a change in any variable. The special case of Faustman�s problem obtains for m = 1

where it can be veri�ed using (3) and (4) that

W (T; 1) =
e�rT

1� e�rT fPv (T )� C(1)g � C(1)

This expression corresponds to the formulation of Faustmann�s problem where the �xed

cost is interpreted as a planting cost to be born T periods prior to the �rst harvest.

In order to maximize the objective, the forest operator chooses the optimal rotation

age T � and the optimal fraction m� of younger trees harvested.

3.1 The Optimal Rotation

Let us start with the choice of T , given any exogenous value ofm in the interval [0; 1]. We

assume thatW (T;m) is non negative for some admissible pair (T;m) ; with T > 0 which

means that the forest is worth exploiting and the problem is not trivial. The question

whether management à la Faustmann is preferable (m = 1) or not will be addressed

further below.

Provided second-order conditions are satis�ed the �rst-order condition de�nes the

optimal rotation cycle T � as the harvest age at which @W (T;m)
@T

= 0. In Section A of the

appendix, we show that the optimal rotation T � must in consequence be such that

r
e�rT

1� e�rT

�
P

�
m

2�mv(T ) +
1�m
2�mv(2T )

�
� C(m)

�
(8)

= P

�
m

2�mv
0(T ) +

2 (1�m)
2�m v0(2T )

�
� P

�
1

2�mv
0(T ) +

2 (1�m)
2�m v0(2T )

�
(1� e�rT )

which can also be written as

rW (T;m)+r [PS(T;m)� (PH (T;m)� C (m))] = P @H (T;m)
@T

�P @S (T;m)
@T

�
1� e�rT

�
(9)

Both (8) and (9) are extensions of the original Faustmann�s formula and have similar

interpretations. They express non arbitrage conditions equalizing marginal revenue �ows
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on the right-hand side with opportunity costs on the left-hand side. Expression (8) is

formulated in terms of known functions exclusively and provides a self contained implicit

form for the optimum rotation.

In expression (9) the value function has been substituted in again, making its in-

terpretation easier and comparable with the standard Faustmann rule. It is a modi�ed

golden rule of forestry stating that the rotation is optimal when two components are

equalized. The �rst component, on the left-hand side, is the opportunity cost of wait-

ing, that is the interest on capital. It consists of the interest on the land (�rst term on

the left-hand side) whose value is W , and the interest on that part of the stand which

is not harvested as expressed in the second term on the left-hand side: the value of the

stand just before harvest PS net of the harvest value PH � C.

The second component, on the right-hand side of (9), is the bene�t from allowing the

rotation to increase. The bene�t from allowing the trees to continue growing is composed

of two elements. The �rst term on the right-hand side is the value of the marginal

increase in harvest. The second term accounts for the change in the steady-state stand

value associated with a marginal change in rotation. It enters negatively because the

steady-state stand can be viewed as an input for the production of the harvest; a more

valuable stand means more costly production, which is a negative contribution to bene�t.

However the cost of holding the steady state stand is shared by all future harvests; in

order to consider its contribution to the current harvest only, the term in @S(T;m)
@T

is thus

multiplied by
�
1� e�rT

�
. In fact it can be veri�ed that, if the fraction of the change in

stand value allocated to any single harvest is indeed the last term in (9), then the total

value of the marginal change in stand value will be exactly allocated over an in�nity of

harvests:
P1

k=0 e
�rTP @S(T �;m)

@T

�
1� e�rT

�
= P @S(T �;m)

@T
.

To sum up, when the proportion of each age group is exogenous, the determination

of the optimal rotation in the mixed rotation forest is determined by a non arbitrage

condition reminiscent of Faustmann�s formula. However it di¤ers notably from it because

the capital carried over from one rotation to the next does not consist of bare land only,

but also includes the trees that are allowed to grow till the next harvest. This is stated

12



in the proposition below.

Proposition 1 (Mixed Rotation) When the proportion m of younger trees allowed to

reach age 2T is given, the optimum rotation T � satis�es the non arbitrage condition

(9). This condition requires the opportunity cost of the land plus the opportunity cost of

timber left standing at harvest, exactly to o¤set the marginal change in current harvest

value minus the change in steady state stand value allocated to the current harvest.

The second-order condition is @
2W (T;m)
@T 2

� 0, or, as shown in the appendix,

r

1� e�rT
@H (T;m)

@T
+

1

1� e�rT
@2H (T;m)

@T 2
�
r
�
1 + e�rT

�
1� e�rT

@S (T;m)

@T
+
@2S (T;m)

@T 2
(10)

Considering (3) and (4) this condition implies a restriction on the curvature of the

volume function. In the special case of Faustmann�s analysis, it is well known that

it is milder than concavity of v at T . This can be veri�ed here by setting m = 1

before substituting (3) and (4) into (10) to get the second-order condition for Faustmann

rotation: �rv0 (T ) + v00 (T ) � 0. The higher the discount rate, the further the second-

order condition is from strict concavity of v at T . This is because the cost of delaying

harvest reduces the bene�t from growth even if marginal tree growth is not diminishing.

In general, when m < 1, this is also true. However two extra considerations enter the

second-order condition: �rst the marginal e¤ect on harvest value is di¤erent because

some trees are cut at age T while some others are cut at age 2T ; second, despite the

fact that the mix of age T and age 2T trees in the steady state stand is exogenous, the

relative contribution to value of these age categories is a¤ected by harvest age. Both

elements complicate the curvature restriction by requiring simultaneous consideration of

the growth function at age T and age 2T as can be veri�ed by substituting (3) and (4)

into (10).

Nevertheless, since the volume function is twice continuously di¤erentiable, concave

beyond some age t1, and rising over [0; t2], it is certain that, if a maximum T � 6= 0 exists

as assumed, it is interior and de�ned by conditions (9) and (10).5

5Ruling out multiple local maxima would require additional restrictions on the non concave part of
v but would not add to the understanding of the decision.
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3.2 The Optimal Harvest Rate of Younger Trees

Sofar the proportion m of younger trees cut at harvest has been treated as exogenous

and the optimum rotation was established accordingly. Let us now treat m as a variable

and the optimum rotation as a function T � (m); what is the optimal level of m within

the interval [0; 1]? As discussed earlier one expects the answer to depend on properties

of the net cost function and on parameters P and r. The solution may be interior,

m 2 (0; 1), or it may be one of two corner solutions. The �rst possible corner solution

(m = 1) corresponds to the original Faustmann�s rule: all trees are cut at each harvest.

The second possible corner solution (m = 0) generates double rotations, a form of stand

management involving overlapping generations of trees where all trees aged 2T are cut

at each harvest, while all trees aged T are left standing. The interior solution also

involves overlapping generations of trees to be cut at age 2T , but, unlike the case of

double rotations where trees are not cut until they reach age 2T , each harvest involves

both trees aged T and trees aged 2T ; we call this mixed rotations.

Since T � = T � (m) corresponds to an interior maximum of W (T;m) with respect to

T , the envelope theorem implies

dW (T �(m);m)

dm
=
@W (T �(m);m)

@m

=
1

1� e�rT �(m)
P

(2�m)2
��
1 + e�rT

�(m)
�
v(T �(m))� e�rT �(m)v(2T �(m)

�(2�m)
2

P
C 0(m)

�
(11)

Consider the situation where costs do not vary with m: C (m) = c. Equation (11)

implies

sign
dW (T �(m);m)

dm
= sign

��
1 + e�rT

�(m)
�
v(T �(m))� e�rT �(m)v(2T �(m))

	
(12)

If the term on the right-hand side of (12) is positive for anym 2 [0; 1], then dW (T �(m);m)
dm

>

0 for any m 2 [0; 1] so that the optimal value of m is m� = 1. Vice versa if the unique

optimum choice is m� = 1, then it is necessary that the sign in (12) be non negative at

m = 1 and be strictly positive on part of [0; 1]; a su¢ cient condition for m� = 1 would

14



be
�
1 + e�rT

�(m)
�
v(T � (m))� e�rT �(m)v(2T � (m)) � 0 for any m 2 [0; 1]; this condition

is di¢ cult to check as it involves T � (m). A less demanding su¢ cient condition would

be
�
1 + e�rT

�
v(T ) � e�rTv(2T ) � 0 for any T ; however that condition is obviously

violated for growth functions that are convex at low values of T .

Nonetheless, it is possible to show that the optimal value of m is m� = 1 when

C 0(m) = 0. Given a tract of forest land on which a maximum of n� trees can be grown,

suppose a decision maker had the possibility to choose a hypothetical management

formula consisting in the repetition of two inde�nite sequences: harvesting n1 trees at

a cost of c per tree at age T1, and harvesting, at the same cost per tree, n2 trees at age

T2, with n1 � 0, n2 � 0 and n1 + n2 � n�. Suppose further that the objective of that

decision maker was the same as in the mixed rotation problem, that is to maximize the

present discounted value of the stream of net harvest revenues over an in�nite number

of rotations minus the cost of the initial stand:6

max
n1;n2;T1;T2

" 1X
k=0

e�krT1 (Pn1v (T1)� n1c) +
1X
k=0

e�krT2 (Pn2v (T2)� n2c)
#
�P (n1v (T1) + n2v (T2))

(LC)

Problem (LC) is identical to the mixed rotation problem, the maximization of 5 by

choice of m and T under constraints (2) with C (m) = c; but it is less constrained.

Indeed, as in the mixed rotation problem, n1 and n2 must be non negative and such

that n1 + n2 � n� , but they do not need to satisfy condition (2). Also, while the cost

per tree cut is the same in both problems, trees cut at age T1 do not need to be cut

simultaneously with trees cut at age T2 in the (LC) problem. In fact, without loss of

generality one may assume T1 � T2 and interpret trees cut at T1 as the younger trees

of the mixed rotation model and trees cut at T2 as the older trees; then, as a third

di¤erence, the mixed rotation problem is subject to the constraint T2 = 2T1 which does

not apply in the (LC) problem.

It is immediate to show that the solution of problem (LC) is such that T1 = T2 =

T F (c) ; where T F (c) is the Faustmann rotation, and such that n1 + n2 = n�. Then its

6There is no need to impose the existence of a steady state; the choices of T1 and T2 may imply
various cycles.
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optimized value is the same for any admissible value of n1 and n2; and coincides with

Faustman�s forest value for a �xed cost of c, W F (T ; c), with T = T F (c) : Since the

mixed rotation problem is more constrained, its optimand cannot exceed that value:

W (T �(m�);m�; c) � W F
�
T F (c) ; c

�
However (T �(1); 1) is admissible in the mixed rotation problem, with T �(1) = T F (c)

and it can be veri�ed that W (T F (c) ; 1; c) = W F
�
T F (c) ; c

�
. It follows that m� = 1

solves the mixed rotation problem when C (m) = c. This is stated in Proposition 2.

Proposition 2 (Cost does not depend on m) When C (m) = c, the optimal proportion

of younger trees cut at each harvest is m� = 1 and the optimal age at which they are cut

is Faustman�s rotation T F (c).

Consider now the case where net costs depend onm, so that C 0 (m) > 0. A necessary

and su¢ cient condition for the optimal value of m to be lower than unity is then

dW (T �(1); 1)

dm
� 0

or, by (11) ; since T �(1) = T F�
1 + e�rT

F
�
Pv(T F )� e�rTFPv(2T F ) � C 0(1) (13)

The expression
�
1 + e�rT

F
�
Pv(T F )� e�rTFPv(2T F ) represents the discounted gain

in timber revenues, net of the change in the opportunity cost of the trees left standing at

each harvest, caused by shifting production from the age 2T class to the age T class, as

a result of marginally increasing m. When m = 1 as in expression (13) this proportion

cannot be increased; the condition applies to a marginal reduction in m from its level

of unity. Condition (13) states that the marginal loss in net discounted revenues caused

by a reduction in m must be smaller than the corresponding marginal cost saving.

Similarly, a necessary and su¢ cient condition for the optimum value of m to be

higher than zero is
dW (T �(0); 0)

dm
> 0
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or �
1 + e�rT

�(0)
� P
4
v(T �(0))� e�rT �(0)P

4
v(2T �(0)) � C 0(0) (14)

T �(0) is the optimal rotation age when m = 0 and only trees aged 2T (0) are harvested.

When they hold together, conditions (13) and (14) are necessary and su¢ cient for the

optimum value ofm to be interior. Although it is not clear whether
�
1 + e�rT

F
�
v(T F )�

e�rT
F
v(2T F ) is higher or lower than

�
1 + e�rT

�(0)
�
v(T �(0))� e�rT �(0)v(2T �(0)), the fact

that the latter is weighted by P=4 in (14) while the former is weighted by P in (13)

suggests that the cost function must be very convex in order to meet both conditions.7

Thus it appears that the conditions for an interior value of m are relatively stringent.

It is easy to construct a corner solution at m = 0 by observing that condition (14) ; as

well as the �rst-order condition for an interior solution in [0; 1] obtained by setting (11)

equal to zero, are sure to be violated at low values of P while (13) is sure to be satis�ed.

Similarly a corner solution at m = 1 arises at high values of P , when condition (13)

and the �rst-order condition for an interior solution are sure to be violated while (??)

is sure to be satis�ed.8 This is intuitively easy to grasp. When P is high, the weight of

timber revenues relative to forestry and amenity costs is high in the objective function:

in that case it is optimal to manage the forest à la Faustmann (m = 1) which was shown

in Proposition 2 to be best when costs do not depend on m: On the contrary, when P

is low, costs and amenity considerations weigh high in the objective function and the

cost minimizing management option (m = 0) is selected. However no cost gain can be

realized if C 0 = 0, the case falling under Proposition 2.

These results are spelled out in the following proposition.

Proposition 3 (Cost depends on m) When C 0(m) > 0,

7At an interior solution, W (T � (m) ;m) must be concave in m and satisfy the �rst-order condition
dW (T�(m�);m�)

dm� = 0, i.e.,

P (1 + e�rT )

(2�m�)2
v(T �(m))� Pe�rT

(2�m�)2
v(2T �(m)) =

dC(m�)

dm
: (15)

This does not rule out the possibility for W (T � (m) ;m) to change curvature on [0; 1].
8Note that the argument relies on C 0 being strictly positive and applies whatever the (unknown)

curvature of W (T � (m) ;m).
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1. For any tree volume function satisfying Assumption 1 and for any parameters P

and r, if the cost function C(m) satis�es condition (13), then the optimal propor-

tion of younger trees included in each harvest is lower than unity. That is: some

trees are allowed to grow until age 2T before being harvested.

2. If furthermore C(m) satis�es condition (14), then the optimal proportion of younger

trees included in each harvest is strictly between zero and one. That is: while some

trees are allowed to grow until age 2T before being harvested, some trees are also

cut at age T .

3. A corner solution at m = 0 (m = 1) occurs at low enough (high enough) values of

P:

Item 3 of the proposition indicates that the optimal level of m depends on the price

of wood. When the price of wood relative to costs increases, the weight of wood revenues

increases relative to the weight of costs and amenities in the objective function. Since

Proposition 2 has shown that Faustman�s rule and m = 1 are optimal when costs cannot

be manipulated, it is not surprising that a similar result obtains when costs have little

weight in the objective function. Thus when C 0 is positive, as P increases from a low

level to a high level relative to costs and amenities, the optimal proportion of younger

trees cut at each harvest increases from zero to unity.

Items 1 and 2 spell out the conditions for an interior solution for m. As the price

of wood increases relative to cost, the transition from a corner solution at m = 0 to

a corner solution at m = 1 may be smooth and involve a range of prices over which

the optimum value of m is interior, or may occur as a sudden jump from zero to unity.

Precisely, let P be the highest value of P below which condition (14) is violated; and let

�P be the lowest price above which condition (13) is violated. Whether P is smaller or

higher than �P depends on the cost function and the volume growth function. If indeed

it is smaller, then there exists an interval
�
P ; �P

�
over which Item 2 of Proposition 3

applies and the optimum value of m is interior. In the opposite case, no such interval
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exists. Instead there exists an interval
�
�P ; P

�
over which m = 0 and m = 1 are both

local maxima9; at values of P closer to �P m = 0 is the global maximum; at values close

enough to P , the global maximum is m = 1. The optimal value of m is increasing in

P as in the previous con�guration, but the progression is not smooth and consists in a

jump from zero to unity when P overtakes some critical value. As discussed earlier, this

con�guration is not unlikely.

3.3 Comparing Faustmann�s Rotation and Rotations with Tree Retention

Suppose that m is exogenous. Then di¤erentiating the �rst-order condition for T totally

implies:
dT

dm
= �WTm (T;m)

WTT (T;m)

where WTT is negative by the second-order condition. Suppose further that m is at its

optimal level m� so that the �rst-order condition for m can be used in evaluating WTm.

Then we show in the Appendix that WTm is proportional to

� = �re�rT [v(T )� v(2T )] +
�
1 + e�rT

�
v0(T )� e�rT2v0(2T ) (16)

The sign of � depends on the levels and slopes of v at T and at 2T and consequently

on the curvature of v over interval [T; 2T ].

When � > 0 the optimum harvest age increases as the optimum proportion of trees

cut at harvest increases. In other words, the rotation is longer the higher the proportion

of younger trees cut at each harvest; it is maximum under Faustmann�s formula, when no

trees aged 2T are cut. In fact departing from Faustmann�s formula is a decision to reduce

m from an initial level of one in order to allow some trees to reach age 2T . If T was not

reduced by such a change that would unambiguously raise the average age at which trees

were cut. The monotonicity of T �(m) tampers this e¤ect: while some trees are cut at

a higher age (2T instead of T ) under mixed rotations than under Faustmann�s formula,

trees cut at age T are cut earlier because T is reduced. Examination of � indicates

9This property is related to the curvature of W (T (m) ;m) : For example if W (T (m) ;m) is convex
over [0; 1] then �P < P .
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that this is the likely situation. Indeed if no tree is allowed to grow into the decreasing

part of the growth function, the �rst term is positive. The second term is also positive

unless the growth function is very convex in the interval [T; 2T ]; it is de�nitely positive

in particular if the function is concave over that interval.

In general the harvest age and the proportion of trees cut at age T versus age 2T

are determined jointly and vary with the price of wood relative to costs and amenities.

As determined in the previous section, if the solution is interior, m� increases as P

increases. This covariation is noted dP
dm
> 0 bellow. The sign of the covariation of T �

and m� can be studied by di¤erentiating totally the �rst-order condition for T arising

from the maximization of (6) with respect to T and m; where P is treated as parameter:

dT

dm
= �

WTm (T;m) +WTP
dP
dm

WTT (T;m)

where, using the �rst-order condition (8), WTP can be shown to be negative; and where

WTT is negative by the second-order condition whileWTm is proportional to � and likely

to be positive as just discussed.

This implies that the direction of the change in T as m changes is ambiguous, which

is not surprising as con�icting e¤ects are at work. On one hand, there is the e¤ect just

described, applying when m changes exogenously with P �xed; when � is positive, it

calls for longer rotations as m increases. On the other hand, when the change in T � is

caused by an increase in P , so that it occurs jointly with an increase inm, costs incurred

at each harvest are now o¤set by higher revenues; then they can be incurred with higher

frequency which implies that T � should be reduced.

When the optimal level of m is interior, changes in T � associated with marginal

changes in P are themselves of the same order of magnitude as changes in P . In contrast

allowing a tree to grow from age T � to age 2T � is a discrete change of a higher order of

magnitude. In particular, when m is interior and diminishes from unity (the Faustmann

forest) to some value strictly smaller than unity (mixed rotation), the age at which young

trees are cut may be higher or lower than Faustman�s rotation, but the age at which

older trees are cut is de�nitely higher than Faustman�s rotation. A similar conclusion
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may not hold if the optimal level of m is a corner solution and, as a result of a small

change in P , jumps down from unity to zero.

4 Conclusion

Tree retention and forest management practices involving several possible cutting ages

are increasingly viewed as preferable to management à la Faustmann and its �normal�

even-aged forest lots.

In this paper, we have discussed a particular type of selective harvest involving two

age-classes on each lot, and two harvest ages: in each lot harvests take place every T

periods; at each harvest all the older trees are cut and only a fraction of younger trees

are cut. Besides helping forest regeneration and soil protection, this type of forest man-

agement has several advantages in terms of aesthetics, sustainability, biodiversity and

social acceptability, which were modeled by allowing costs to depend on the proportion

of trees left standing at each harvest.

The paper has established and analyzed the optimum proportion of younger trees

cut at each harvest and the optimum rotation. It has determined the conditions on

the net cost of harvesting that this forestry practice must induce if it is to dominate

the standard normalized forest management à la Faustmann. Depending on the net

cost function, di¤erent harvest solutions are possible. The whole forest stand should

be harvested at each rotation if net costs (including amenities) are not dependent on

tree retention. This corresponds to the normal even-aged forest lot à la Faustmann.

However, when net costs increase su¢ ciently with the harvest rate of younger trees, it

is optimal to leave some of these trees uncut until they reach an age equal to twice the

rotation. This results in stands where two age classes coexist and where land is never

left bare. The polar case opposite to Faustmann�s normal forest occurs when net costs

weight heavily in the objective function and are sensitive to the proportion of trees cut

at each harvest. This would be the case if, say, environmental or amenity considerations

were important relative to commercial wood revenues. In that case each forest tract

contains as many younger trees as older ones and only older trees are cut at harvest,
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which leaves half the trees standing at each harvest.

In mixed and double rotations, young trees are cut at an age which may be shorter or

longer than Faustmann�s rotations. This ambiguity occurs because two opposite e¤ects

are at play. On the one hand, selective harvesting reduces net costs, so that those

costs can be incurred at higher frequency. On the other hand the exogenous change in

the relative weight of wood revenues relative to costs and amenities which is causing

the change from management à la Faustmann to mixed rotation must be such that the

relative weight of net costs is increased, calling for a lower frequency of harvests. While

moving away marginally from Faustmann�s normalized forest has an ambiguous e¤ect on

the age at which younger trees are cut, the adoption of the mixed rotation management

practice creates a second age class on the lot; these trees are de�nitely harvested at

a higher age than the original Faustmann age. However the most noticeable e¤ect of

adopting mixed rotations, especially in the extreme polar case of double rotations, is

that the lot is no longer clear cut; up to half the trees may be left to grow further at

each harvest.
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APPENDIX

A First order condition for T :

The �rst-order condition (FOC) is

@W (T;m)

@T
= 0;

where W (T;m) = 1
1�e�rT fPH (T;m)� C(m)g � S (T;m)P: This gives

�re�rT
(1� e�rT )2 fPH (T;m)� C(m)g+

1

1� e�rT P
@H (T;m)

@T
� P @S (T;m)

@T
= 0

re�rT

1� e�rT fPH � Cg = P
@H

@T
�
�
1� e�rT

�
P
@S

@T

Substituting (3) and (4) ; this gives Expression (8) in the text. The above expression
can also be written as

r
1

1� e�rT (PH � C)� r
1� e�rT
1� e�rT (PH � C) =

P@H

@T
�
�
1� e�rT

� P@S
@T

Using W = 1
1�e�rT fPH � Cg � SP ,

r [W (T;m) + S (T;m)P ]�r [PH (T;m)� C(m)] = P @H (T;m)
@T

�P @S (T;m)
@T

�
1� e�rT

�
from which (9) follows.

B Second order condition for T :

Let us use the following notation:

W (T;m) =
1

1� e�rT [PH (T;m)� C(m)]� S(T;m)P

= A(T ) [PH(T;m)� C(m)] � S(T;m)P with A(T ) = 1

1� e�rT .

The second-order condition (SOC) is

@2W (T;m)

@T 2
� 0.

Therefore,

@2A(T )

@T 2
[PH(T;m)� C(m)]+2P @A(T )

@T

@H(T;m)

@T
+PA(T )

@2H(T;m)

@T 2
�P @

2S(T;m)

@T 2
� 0
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Denoting partial derivatives by subscripts,

r2e�rT
�
1 + e�rT

�
(1� e�rT )3

(PH � C) + 2PATHT + PAHTT � PSTT � 0

so that

r
�
1 + e�rT

�
(1� e�rT )2

�
PHT � PST

�
1� e�rT

��
+ 2PATHT + PAHTT � PSTT � 0:

In the last expression, we used the fact that re�rT

1�e�rT [PH � C] = PHT �PST
�
1� e�rT

�
by the �rst order condition.
Replacing A and AT , the SOC is therefore

r

1� e�rT
@H (T;m)

@T
+

1

1� e�rT
@2H (T;m)

@T 2
�
r
�
1 + e�rT

�
1� e�rT

@S (T;m)

@T
+
@2S (T;m)

@T 2

C Proof that WTm is proportional to �

WT = �r
e�rT

(1� e�rT )2
�
m

2�mv(T ) +
1�m
2�mv(2T )�

C(m)

P

�
+

1

1� e�rT

�
m

2�mv
0(T ) +

1�m
2�m2v

0(2T )

�
� 1

2�mv
0(T )� 1�m

2�m2v
0(2T )

Hence

WTm = �r e�rT

(1� e�rT )2
�

2

(2�m)2
v(T ) +

�1
(2�m)2

v(2T )� C
0(m)

P

�
+

1

1� e�rT

�
2

(2�m)2
v0(T ) +

�1
(2�m)2

2v0(2T )

�
� 1

(2�m)2
v0(T )� �1

(2�m)2
2v0(2T )

WTm =
1

(1� e�rT )
1

(2�m)2

(
�r e�rT

(1� e�rT )

"
2v(T )� v(2T )� (2�m)

2C 0(m)

P

#
+
�
1 + e�rT

�
v0(T )� e�rT2v0(2T )

	
Hence WTm is proportional to:

� = �r e�rT

(1� e�rT )

"
2v(T )� v(2T )� (2�m)

2C 0(m)

P

#
+
�
1 + e�rT

�
v0(T )�e�rT2v0(2T )

(17)
Since it is assumed that m = m�, the �rst-order condition (11) holds; it implies:

(2�m)2
e�rT �(m)P

C 0 =

�
1 + e�rT

�(m)
�

e�rT �(m)
v(T �(m))� v(2T �(m)

Substituting into (17) ; it follows that:

� = �re�rT [v(T )� v(2T )] +
�
1 + e�rT

�
v0(T )� e�rT2v0(2T ) (18)
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