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Abstract

We give a full characterization of the open-loop Nash equilibrium of a non-

renewable resource asymmetric game. We show that (i) there almost always

exists a phase where both supply simultaneously positive quantities, (ii) when

the high cost mine is exploited by a number of �rms that goes to in�nity the

equilibrium approaches the cartel-versus-fringe equilibrium with the fringe �rms

acting as price takers, (iii) the cheaper resource may not be exhausted �rst.

This last result has an interesting implication: more competition in the

industry may be detrimental to social welfare. Increasing the number of high

cost �rms may be welfare reducing. This is because a larger number of high

cost �rms may result in an ine¢ cient order of exhaustion of the resources: the

cheaper resource being exhausted �rst.

Key words: nonrenewable resources, Nash equilibrium, cartel-versus-fringe,

open-loop.

�a) Department of Economics, CIREQ. McGill University. b) Department of Spatial Economics,
VU University Amsterdam. c) Department of Economics, Tilburg University. Hassan Benchekroun
and Cees Withagen thank NWO for �nancial support. Hassan Benchekroun also thanks SSHRC
and FQRSC for �nancial support. This project started while Hassan Benchekroun was a visiting
scholar at the Department of Economics at Tilburg University.

1



1 Introduction

Although there exists an established and very large literature addressing the prob-

lem of exploitation of a nonrenewable resource such as oil, there is still no complete

treatment of the case where several agents interact at the market level, each owning

a stock of the resource. Probably the reason is the technical complexity of treating

such a problem in a general formulation. To make progress, this question has been

addressed under di¤erent assumptions. The assumptions typically specify the type

of competition prevailing, the type of information and commitment possibilities, the

market conditions and �rms�characteristics. In this paper we characterize the ex-

traction equilibrium for a larger set of cases than has been treated in the literature

so far (a more speci�c description follows).

Interest in nonrenewable resource has been at least partly driven by the importance

of the oil market worldwide. Salant (1976) and later Ulph and Folie (1980) model

the oil market as a market with one coherent cartel and a fringe, consisting of many

identical small oil suppliers acting as price takers. Lewis and Schmalensee (1980) and

Loury (1986) justify the assumption of price taking behavior of the fringe and show

that when the number of fringe members becomes arbitrarily large, the equilibrium

converges to the equilibrium obtained under price taking behavior assumption. In

these papers the cartel and the fringe act simultaneously. Gilbert (1978), Newbery

(1980), Ulph (1980), and Groot, Withagen and de Zeeuw (1992, 2003) consider the

case where the cartel has a �rst mover advantage and the fringe members are followers.

In this literature �rms are assumed to choose a production path and therefore

are able to commit to a production path at the initial time, they choose open-loop

strategies. The alternative modelling choice is to allow the �rms to adjust their

extraction rates at each moment to the level of the stock at that moment and to

time, �rms choose closed-loop strategies. Commitment can be achievable for example

in the presence of a perfect futures market for the resource. In other circumstances

information about the resource stocks of competitors may not be available. In that

case modelling each �rm�s problem as a choice of an open-loop extraction strategy

that maximizes its discounted pro�ts is a reasonable assumption1.

1The drawback is that if �rms have information about all stocks at future dates and have the
�exibility to adjust their production, the equilibrium obtained with open-loop strategies may not
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In the present paper we use a di¤erential game framework2 (see Dockner et al.,

(2000)) and restrict attention to the open-loop Nash equilibrium. The relationship

between open-loop Nash equilibrium and feedback Nash equilibrium is studied in

Benchekroun and Withagen (2008). In particular they show that in case of a �nite

number of players the two equilibria do not coincide, but that they do in the case of

a price taking fringe.

The objective of this paper is threefold. We �rst characterize the open-loop Nash

equilibrium in the case where there is an arbitrary number of �rms in two groups

where �rms can di¤er across groups, in both their resource stocks and their constant

marginal extraction costs. We thereby extend the analysis by Loury (1986), where

the players are identical with regard to extraction costs. We also extend the work

by Lewis and Schmalensee (1980) by including more than one supplier in each cost

category. Secondly, we derive the open-loop Nash equilibrium for the cartel-versus-

fringe model from the oligopoly model by considering the case of one coherent cartel

and the number of fringe members going to in�nity. Thirdly, we address the order of

exploitation of the resources and its welfare implications. It is shown that the Nash

equilibrium might entail situations where the well known Her�ndahl rule is violated,

in particular, the low cost mines are still being exploited after exhaustion of the

more expensive mines. We provide a full account of the phenomenon which was �rst

illustrated in an example in Lewis and Schmalensee (1980). Moreover, we highlight a

surprising implication of the ine¢ ciency of the order of use of the resources: we show

that an increase in the number of high cost mines might lead to a deterioration of

social welfare. This seems paradoxical because one would conjecture that increasing

the number of players will bring the economy closer to perfect competition, which,

in the case at hand yields the social optimum. However, here, increasing the number

of high cost mines may cause a reversal of the order of the exhaustion of stocks: the

be subgame perfect. It is however time-consistent: if all players follow their equilibrium strategies
then at no instant of time will a given �rm want to revise its production plan. We would like to
point out that the predominance of the analysis of open-loop strategies in the literature is not purely
motivated by realism. One of the reasons given by Lewis and Schmalensee, who concentrate on the
open loop Nash equilibrium, and not on the feedback equilibrium, is that, "The latter concept seems
intractable in this model" as they note (p 477). A few exceptions are Eswaran and Lewis (1985),
Polasky (1990) and Salo and Tahvonen (2001).

2Dockner, Jorgensen, Long and Sorger (2000) covers di¤erential games theory and applications,
in particluar to natural resource economics. Jorgensen and Zaccour (2004) contains a tutorial on
di¤erential games.
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high cost stock is exhausted before the low cost stock. This ine¢ ciency that results

from more competition due to an additional high cost �rm can outweigh the bene�t

from extra competition.

In section 2 we present the model and the equilibrium concepts. In section 3

we fully characterize the open-loop Nash equilibrium. Section 4 treats the order of

exploitation and the welfare consequences. Section 5 concludes.

2 The model

There are n(> 1) �rms and two types of mines l and h; distinguished by their marginal

extraction costs. Marginal extraction costs are constant: kl and kh for the low cost

and high cost mines, respectively, with kl < kh: Each �rm exploits one and only one

mine. There are nl �rms that exploit the mines of type l and nh �rms that exploit

the mines of type h with nl + nh = n: Firm i of type j (i = 1; 2; :::; nj; j = l; h) is

endowed with an initial stock Sj0i. Extraction rates at time t � 0 are denoted by

qji (t) and are non-negative: De�ne q
j (t) =

njX
i=1

qji (t) and S
j
0 =

njX
i=1

Sj0i for j = l; h

as aggregate supply and initial stocks of the �rm types. Demand for the resource is

stationary and linear with a choke price �p : p(t) = �p�x(t); where p(t) is the price3 at
time t, x(t) is the quantity demanded at time t and �p > kh. We work in continuous

time, which starts at time 0. In an equilibrium at each moment t � 0 the price of the
resource is given by p(t) = �p � ql(t) � qh(t): All agents within a group are assumed
identical with regard to stocks: Sj0i = Sj0=n

j for j = l; h. An extraction path qji
(i = 1; 2; :::; nj; j = l; h) is said to satisfy the resource constraint if

1Z
0

qji (s)ds � S
j
i0 (1)

3More precisely we have p (t) = Maxf�p� x (t) ; 0g:Throughout the paper we will focus on cases
where the outcome is such that �p�x (t) > 0 for all t. This will be true for example if ceteris paribus,
the choke price �p is large enough.
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Firms are oligopolists in the resource market and the objective of each �rm i is to

maximize the discounted sum of its pro�ts

1Z
0

e�rs[�p� ql(s)� qh(s)� kj]qji (s)ds (2)

subject to its resource constraint.

De�nition: Open-loop Nash Cournot equilibrium (OLNE)

A vector of functions q � (ql1; ::; q
l
nl
; qh1 ; ::; q

h
nh
) with q(t) � 0 for all t � 0 is an

open-loop Nash-Cournot equilibrium (OLNE) if

i. every extraction path satis�es the corresponding resource constraint

ii. for all i = 1; 2; :::; nl

1Z
0

e�rs[�p� ql(s)� qh(s)� kl]qli(s)ds �
1Z
0

e�rs[�p�
X
j 6=i

qlj(s)� q̂li(s)� qh(s)� kl]q̂li(s)ds

for all q̂li satisfying the resource constraint

iii. for all i = 1; 2; :::; nh

1Z
0

e�rs[�p�qh(s)�ql(s)�kh]qhi (s)ds �
1Z
0

e�rs[�p�
X
j 6=i

qhj (s)� q̂hi (s)�ql(s)�kh]q̂hi (s)ds

for all q̂hi satisfying the resource constraint.

3 Open-loop Nash equilibrium with a �nite num-

ber of players

Each �rm i takes the supply paths of its n � 1 competitors as given and maximizes
(2) subject to (1). The Hamiltonian associated with the problem of �rm i therefore

reads

Hj
i (q

j
i ; �

j
i ; t) = e

�rt ��p� ql � qh � kj� qji + �ji ��qji � (3)
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Among the necessary conditions we have that the co-state variable �ji is constant

because the Hamiltonian does not contain the resource stock. In addition the Hamil-

tonian is maximized with respect to the �rm�s own extraction rate, at each moment

in time. Writing these necessary conditions for a solution to each of the n individual

�rms and using symmetry among the players within a group, i.e. qji = qj=nj and

�ji = �
j for j = l; h and all i = 1; ::; nj; gives the following.

Along intervals of time [t1; t2] with t2 > t1 � 0 where, for all t 2 [t1; t2]; qli(t) > 0
for all i = 1; ::; nl and qhi (t) = 0 for all i = 1; ::; n

h; we have

e�rt
�
�p� ql(t)� 1

nl
ql(t)� kl

�
= �l (4)

p(t) = �p� ql(t) � kh + ert�h (5)

p(t) =
1

nl + 1

�
�p+ nl

�
kl + �lert

��
(6)

The �rst condition follows from the maximization of the Hamiltonian of player

i from category l assuming an interior solution. The second condition is necessary

in order for players from category h not to supply. The third condition gives the

resulting market price.

Along intervals of time [t1; t2] with t2 > t1 � 0 where, for all t 2 [t1; t2]; qli(t) = 0
for all i and qhi (t) > 0 for all i; we have

e�rt
�
�p� qh(t)� 1

nh
qh(t)� kh

�
= �h (7)

p(t) = �p� qh(t) � kl + ert�l (8)

p(t) =
1

nh + 1

�
�p+ nh

�
kh + �hert

��
: (9)

Along intervals of time [t1; t2] with t2 > t1 � 0 where, for all t 2 [t1; t2]; qli(t) > 0
for all i and qhi (t) > 0 for all i; we have

e�rt
�
�p� ql(t)� qh(t)� 1

nl
ql(t)� kl

�
= �l (10)

6



e�rt
�
�p� qh(t)� ql(t)� 1

nh
qh(t)� kh

�
= �h (11)

For ql(t); qh (t) and p(t) we then obtain

nl + nh + 1

nl
ql(t) = �p+ nh

�
kh + �hert

�
�
�
nh + 1

� �
kl + �lert

�
(12)

nl + nh + 1

nh
qh(t) = �p+ nl

�
kl + �lert

�
�
�
nl + 1

� �
kh + �hert

�
(13)

p(t) =
1

nl + nh + 1

�
�p+ nl

�
kl + �lert

�
+ nh

�
kh + �hert

��
(14)

By S; C l and Ch we denote intervals of time with simultaneous supply, sole supply

by the l�type mines and sole supply by the h�type mines, respectively.
At points of transition from one regime to another the price trajectory is contin-

uous, a property that will be exploited below. This property is due to the fact that

along an optimum the Hamiltonian is continuous. Continuity of the price path at the

di¤erent possible transitions gives:

- a transition at t from S to C l or vice versa requires

1

nl + 1
(�p+ nl

�
kl + �lert

�
) = kh + �hert (15)

- a transition at t from S to Ch or vice versa requires

1

nh + 1
(�p+ nh

�
kh + �hert

�
) = kl + �lert (16)

- a transition at t from C l to Ch or vice versa requires

1

nl + 1
(�p+ nl

�
kl + �lert

�
) =

1

nh + 1
(�p+ nh

�
kh + �hert

�
) (17)

The direct procedure to solve for an OLNE is to solve the above system of neces-

sary conditions. Given all the possible alternatives such an approach is very tedious.

Instead, we examine di¤erent sequences of phases of exploitation and rule out those

that violate the above set of conditions, including continuity of the price path. This

turns out to be a powerful instrument to characterize the sequence of exploitation
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along the equilibrium path and it greatly facilitates the characterization of the ex-

ploitation path. We establish several lemmata that are helpful in the derivation of a

complete characterization of the equilibrium.

Lemma 1:

i. There cannot be a transition from C l to Ch or vice versa.

ii. There exists a phase S:

iii. A phase Ch cannot precede a phase S:

Proof:

i. Suppose a transition from C l to Ch or vice versa takes place at time t: Then

equation (17) holds. It follows from (5) and (6) that

1

nl + 1

�
�p+ nl

�
kl + �lert

��
� kh + �hert (18)

Moreover, it follows from (8) and (9) that

1

nh + 1

�
�p+ nh

�
kh + �hert

��
� kl + �lert (19)

Using (19) in (18) yields �p � kh + �hert. Therefore

p(t) =
1

nh + 1

�
�p+ nh

�
kh + �hert

��
� 1

nh + 1

�
�p+ nh�p

�
= �p

which implies a too high price to have a positive quantity demanded after the tran-

sition.

ii. This follows immediately from statement (i) of the lemma.

iii. Along Ch equations (8) and (9) hold. Hence, for t 2 Ch

�p+ nhkh �
�
nh + 1

�
kl �

��
nh + 1

�
�l � nh�h

�
ert (20)

A transition at t1 from Ch to S or vice versa requires (16) to hold, stated otherwise

�p+ nhkh �
�
nh + 1

�
kl =

��
nh + 1

�
�l � nh�h

�
ert1 (21)

Since �p > kh > kl we have �p + nhkh �
�
nh + 1

�
kl > 0: Note that if Ch precedes

S;
��
nh + 1

�
�l � nh�h

�
ert is decreasing over time since it is a monotonic function of

time and it is larger than �p + nhkh �
�
nh + 1

�
kl before t1 and equal to �p + nhkh �

8



�
nh + 1

�
kl at t1. This implies that

�
nh + 1

�
�l � nh�h < 0; which along with �p +

nhkh �
�
nh + 1

�
kl > 0 contradicts (21)

It will prove useful to de�ne

�kl � 1

nl + 1
(�p+ nlkl):

Since �p > kl we clearly have �kl > kl. Given a cost kl the equilibrium depends on the

extent of the cost disadvantage of the high cost �rms.

Lemma 2:

i. Suppose kh < �kl, then C l cannot precede S:

ii. Suppose kh > �kl, then S cannot precede C l:

Proof:

i. Along C l equations (5) and (6) hold. Hence for t 2 C l

�p+ nlkl �
�
nl + 1

�
kh �

��
nl + 1

�
�h � nl�l

�
ert (22)

A transition at t1 from C l to S or vice versa requires (15) to hold, stated otherwise

�p+ nlkl �
�
nl + 1

�
kh =

��
nl + 1

�
�h � nl�l

�
ert1

Now suppose that �p + nlkl �
�
nl + 1

�
kh > 0 or �kl > kh and we have C l before

S. Note that
��
nl + 1

�
�h � nl�l

�
ert is decreasing over time since it is a monotonic

function of time and it is larger than �p + nlkl �
�
nl + 1

�
kh before t1 and equal to

�p+nlkl�
�
nl + 1

�
kh at t1. This implies that

�
nl + 1

�
�h�nl�l < 0; which along with

�p+ nlkl �
�
nl + 1

�
kh > 0 contradicts (22).

ii. If �p+ nlkl�
�
nl + 1

�
kh < 0 or �kl < kh and if a transition occurs from S to C l;

then we get a contradiction in the same way.

Lemma 3:

i. There is simultaneous supply throughout if only if

Sl0=n
l

Sh0 =n
h
=
�p+ nhkh �

�
nh + 1

�
kl

�p+ nlkl � (nl + 1) kh (23)
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ii. If

kh < �kl

there is no simultaneous supply just before total exhaustion.

Proof :

i. De�ne T as the time of exhaustion of all resources. If there is simultaneous

exploitation just before T , then ql(T ) = qh(T ) = 0, and, from (12), (13) and (14),

�p � kh = �herT and �p � kl = �lerT : Let the interval with simultaneous exploitation
start at t1: Integration of (12) gives

nl + nh + 1

nl

Z T

t1

ql(t)dt =

Z T

t1

�
�p+ nh

�
kh + �hert

�
�
�
nh + 1

� �
kl + �lert

��
dt

That is

nl + nh + 1

nl
Sl(t1) =

�
�p+ nhkh �

�
nh + 1

�
kl
�
(T � t1) +

�
nh�h �

�
nh + 1

�
�l
�
erT
�
1� ert1�rT

�
r

Substituting �p� kh = �herT and �p� kl = �lerT gives after algebraic manipulation

nl + nh + 1

nl
rSl(t1) =

�
�p+ nhkh �

�
nh + 1

�
kl
� �
rT � rt1 � 1 + ert1�rT

�
(24)

Similarly, from 13

nl + nh + 1

nh
rSh(t1) =

�
�p+ nlkl �

�
nl + 1

�
kh
� �
rT � rt1 � 1 + ert1�rT

�
(25)

Setting t1 = 0 and dividing (24) by (25) yields (23).

ii. Since �p+nhkh�
�
nh + 1

�
kl > 0 by assumption, this is immediately clear from

(24) and (25)
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Lemma 4:

Consider the sequence S ! C l; with C l the �nal phase before exhaustion and

where the transition takes place at instant of time t1 and exhaustion at T: Then

nl + nh + 1

nh
rSh0 =

�
�p+ nlkl �

�
nl + 1

�
kh
� �
rt1 � 1 + e�rt1

�
(26)

nl + nh + 1

nl
rSl0 = � nh

nl + 1

�
�p+ nlkl �

�
nl + 1

�
kh
� �
rt1 � 1 + e�rt1

�
(27)

+
nl + nh + 1

nl + 1

�
�p� kl

� �
rT � 1 + e�rT

�
Proof: See Appendix A.

Lemma 5:

Consider the sequence S ! Ch; with Ch the �nal phase before exhaustion and

with the transition taking place at instant of time t1 and exhaustion at T: Then

nl + nh + 1

nl
rSl0 =

�
�p+ nhkh �

�
nh + 1

�
kl
� �
rt1 � 1 + e�rt1

�
(28)

nl + nh + 1

nh
rSh0 = � nl

nh + 1

�
�p+ nhkh �

�
nh + 1

�
kl
� �
rt1 � 1 + e�rt1

�
+ (29)

nl + nh + 1

nh + 1

�
�p� kh

� �
rT � 1 + e�rT

�
Proof: Due to symmetry the proof is exactly the same as the proof of the previous

lemma.

We can now exploit the lemmata above to characterize the sequence along an

OLNE depending on the parameter values.

Proposition 1

Suppose kh > �kl. For a given Sh0 , there exists ~S
l
0 > 0 such that the equilibrium

sequence reads C l ! S ! Ch if Sl0 > ~Sl0 and S ! Ch if Sl0 � ~Sl0.

11



Proof:

Given the assumption on the costs, kh > k
l
, we cannot have C l alone or Ch alone

over the entire game: both types of mines eventually exploit and exhaust their stock.

According to lemma 1ii, there must be a phase S: According to lemma 3ii, the �nal

phase of the exploitation cannot be S. A phase S cannot precede C l (lemma 2ii).

Therefore, the last phase of the exploitation pattern is Ch: From Lemma 1i there

cannot be a transition C l ! Ch. Therefore, the last two phases will be S ! Ch: It

remains to show that the only phase that can precede S is C l. This can easily be seen

from (16), that implies that there is at most one transition S ! Ch or vice versa.

Since there must be one transition S ! Ch, the equilibrium reads C l ! S ! Ch or

S ! Ch.

We show next that if the initial stock Sl0 is large enough we must have a phase

C l that precedes S ! Ch. Suppose that the equilibrium reads S ! Ch with the

transition at t1 and �nal time T: It follows from (13) that

nl + nh + 1

nh
qh(0) = �p+ nlkl �

�
nl + 1

�
kh + nl�l �

�
nl + 1

�
�h (30)

When Sl0 becomes arbitrarily large it follows from (28) and (29) that t1 and T also

become arbitrarily large. Use �h = e�rT
�
�p� kh

�
and rewrite (16) to obtain

�l =
nh

nh + 1
�h + e�rt1(

�p+ nhkh

nh + 1
� kl) (31)

Hence, both �l and �h tend to zero when Sl0 becomes arbitrarily large. Equation (30)

then implies a negative value of qh (0) : When Sl0 tends to zero q
h (0) is positive. It

is shown in Appendix B that qh (0) as a function of Sl0 is monotonically decreasing.

Therefore, there exists a unique Ŝl0 > 0 such that if Sl0 > Ŝl0 the equilibrium reads

C l ! S ! Ch and S ! Ch if Sl0 � Ŝl0

From Proposition 1 it is clear that if the cost di¤erence is large enough, i.e. given

kl > 0; kh > �kl, the low cost resource is exhausted �rst regardless of the level of

the stocks. However, when the cost di¤erence is not too large, i.e. given kl > 0;

kh 2
�
kl; �kl

�
, the order of exhaustion of the resource stocks depends on the initial

stocks available.
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Proposition 2

Suppose kh < �kl.

i. If

Sl0=n
l

Sh0 =n
h
=
�p+ nhkh �

�
nh + 1

�
kl

�p+ nlkl � (nl + 1) kh (32)

then the equilibrium reads S

ii. If

Sl0=n
l

Sh0 =n
h
<
�p+ nhkh �

�
nh + 1

�
kl

�p+ nlkl � (nl + 1) kh (33)

then the equilibrium reads S ! Ch

iii. If

Sl0=n
l

Sh0 =n
h
>
�p+ nhkh �

�
nh + 1

�
kl

�p+ nlkl � (nl + 1) kh (34)

then the equilibrium reads S ! C l:

Proof:

From Lemma 1ii there always exists an S phase. By Lemma 2i the S phase cannot

be preceded by C l and, from Lemma 1iii, the S phase cannot be preceded by Ch:

Therefore, the equilibrium starts with S: Since a transition from C l to Ch or vice versa

is ruled out by Lemma 1i, the equilibrium reads S ! Ch or S ! C l: If condition

(32) is satis�ed we have simultaneous supply throughout. If conditions (28) and (29)

are satis�ed with T > t1 > 0 then we must have S ! Ch: Otherwise the equilibrium

reads S ! C l: If this would not hold, a contradiction is obtained as is straightforward

to see

We have not yet treated the border cases where either kl = kh or kh = �kl. This is

dealt with in

Proposition 3

i. Suppose kh = �kl. Then the result of proposition 1 holds with C l collapsing

ii. Suppose kl = kh: Then the results of proposition 2 hold with kl = kh.
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Proof:

i. If the premises of the proposition holds, lemma 1i still holds. This implies from

(13) that at the beginning of the S�phase qh(0) > 0; regardless of the stocks.
ii. This is evident. This case reduces exactly to the case studied in Loury (1986)

These propositions fully characterize the OLNE for a �nite number of players. It

can be checked that in each of the cases above we have T > t1:

We end this section by considering the case of an in�nite number of fringe members

and a single cartel. This constitutes what is called the cartel-versus-fringe model. We

assume that the cartel owns the resources that are cheap to exploit. So, nl = 1

and nh = 1: If we take the limits of the equilibrium derived under di¤erent cost

constellations we arrive at

Proposition 4

If nl = 1 and if nh !1 the open loop Nash equilibrium has the following limits:

i. If 1
2

�
�p+ kl

�
< kh; then the Nash equilibrium sequence is C l ! S ! Ch; with

the Ch phase collapsing if Sl0 is smaller than a certain threshold.

ii. If 1
2

�
�p+ kl

�
= kh; then the Nash equilibrium sequence is S ! Ch

iii. If 1
2

�
�p+ kl

�
> kh; then the Nash equilibrium sequence is S if Sl0

Sh0
= kh�kl

�p+kl�2kh ;S !

Ch if Sl0
Sh0
< kh�kl

�p+kl�2kh and S ! C l if Sl0
Sh0
> kh�kl

�p+kl�2kh

iv. If kl = kh; then the Nash equilibrium sequence is S ! C l

Proof:

This is straightforward from propositions 1, 2 and 3

This outcome corresponds to the outcome of a cartel-fringe model where the fringe

�rms are assumed to be price takers. See Ulph and Folie (1980). Theoretically it

cannot be excluded beforehand that the type of mine with the number of players

going to in�nity is the cheaper type. According to proposition 1 (with nl = 1) the
equilibrium reads Ch ! S ! C l; with the �rst phase possibly collapsing.

We conclude that not only in the case of a symmetric oligopoly but also in more

general settings behaviour of large groups of similarly placed oligopolists can be rep-

resented as price taking behaviour. This gives a sound foundation for the assumption

of price taking behavior of the fringe in the open-loop cartel-fringe model.
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4 The order of extraction and welfare e¤ects

One feature of the equilibrium is that for certain parameter values the more expensive

resource is exhausted before the cheaper one. This occurs when the cost advantage of

the cheaper mines is only moderate and their aggregate stock is large (see (34)). This

is an instance where the Her�ndahl rule does not hold. Violation of the Her�ndahl

rule in our framework was illustrated in an example with two �rms in Lewis and

Schmalensee (1980, proposition 6c). We have provided the precise and general con-

ditions under which this phenomenon can occur4. From a welfare perspective the

violation of the Her�ndahl rule is an undesirable outcome because welfare maximiza-

tion requires the cheaper resources be exploited �rst. In the present section we exploit

the characterization of the conditions under which the Her�ndahl rule is violated to

determine the welfare e¤ects of having a more competitive industry through a larger

number of high cost �rms.

Suppose that initially we are in an equilibrium with only simultaneous supply, i.e.,

(32) holds. Written di¤erently

Sl0
Sh0
=
(�p+ nhkh �

�
nh + 1

�
kl)=nh

( �p+ nlkl � (nl + 1) kh)=nl (35)

Let us keep the aggregate initial stocks �xed and increase the number of high cost

mines. Then the right hand side of equality (35) decreases while the left hand side

remains unchanged, implying that the new equilibrium becomes S ! C l: Therefore,

increasing the number of high cost mines causes an ine¢ ciency. We show that this

ine¢ ciency can outweigh the positive impact from having more competition in the

market and therefore that having more competitors can be detrimental to social

welfare. This possibility cannot be detected in models where �rms have the same

costs. Indeed, Loury (1986) assumes equal extraction costs (but di¤ering reserves) and

�nds that increasing the number of players in the oligopoly game increases e¢ ciency.

In order to demonstrate the possibility of decreasing social welfare we construct a

simple example. Take �p = 10; r = 0:1; nl = 1; kl = 0; kh = 2:5; Sl0 = 100 and

Sh0 = 150. Then k
h < �kl, and for nh = 12 equality (35) holds. Therefore, if nh = 12

4The Her�ndahl rule is known to be violated in other circumstances as well (e.g., general equi-
librium framework, cost uncertainty, ..). See for example Amigues et al. (1998), Chakravorty and
Krulce (1994), Gaudet et al. (2001) and Gaudet and Lasserre (2008).
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the equilibrium has simultaneous supply throughout and for nh < 12
�
nh > 12

�
the

equilibrium reads S ! Ch
�
S ! C l

�
. Let W denote social welfare de�ned as the

discounted sum of consumer and producers�surplus:

W =

1Z
0

e�rt[
1

2
(�p� p)(ql + qh) + (p� kl)ql + (p� kh)qh]dt

which after substitution of the price gives

W =

1Z
0

e�rt[(�p� kl)ql + (�p� kh)qh � 1
2
(ql + qh)2]dt

For the case at hand W is plotted in �gure 1 as a function of the number of high

cost �rms. We observe that social welfare increases as nh increases from 1 to 2; but

that it monotonically decreases thereafter. Therefore, the example shows that social

welfare can decrease not only if the number of high cost �rms is increased from the

level where the equilibrium is S throughout5 (i.e., nh = 12), but also if we increase

that number in part of the S ! Ch regime (i.e., nh < 12). This surprising negative

outcome from increased competition is due to the reversal of the Her�ndahl rule.

Increasing competition at the level of high cost mines only, exacerbates the ine¢ ciency

from the order use of resources which can outweigh any gain on the consumer surplus

front.

Note that changing the number of high cost �rms does not a¤ect the terminal

time. This is the case since using (25) and (26) gives

r

�
nl + 1

nl
Sl0 + S

h
0

�
=
�
�p� kl

� �
rT � 1 + e�rT

�
The shadow price of the stock that is exhausted last doesn�t change either. What

does change is the date of the transition from the S�phase to the monopoly phase
(either C l or Ch):

Some further illustrations are given in �gures 2 and 3 below, for the same para-

meter values as above except for Sh which is now taken equal to 40. These parameter

values are such that for nh = 1 we are in S throughout and thus for all nh > 1 we are

5we are in a S ! Cl regime for nh > 12.
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Figure 1: Social welfare as a function of the number of high cost �rms

in the S ! C l regime and social welfare W is a strictly decreasing function of nh.

For this latter case, �gure 2 displays the two price paths corresponding to nh = 1

and nh = 2: The initial price at nh = 2 is lower compared to nh = 1; re�ecting

increased competition. However the equilibrium price path under nh = 2 eventually

passes above the price path under nh = 1. Thus, consumer surplus for nh = 2 is

initially larger than for nh = 1 but eventually falls below it. The di¤erence between

instantaneous social welfare for nh = 2 and for nh = 1 is depicted in �gure 3. We

observe that instantaneous social welfare does not decrease uniformly. The example

shows that initially and eventually instantaneous welfare is smaller for nh = 2; but

there is an intermediate period of time where instantaneous social welfare for nh = 2

is larger than for nh = 1.

The intuition of this result is that the increase of the number of high cost �rms

creates more competition in the market and leads the �rm that owns the low cost

mine to reallocate its production through time: extract less initially and more later

(see �gure 4). Thus the increase of the number of high cost �rms, although it increases

consumption in the short-run (see �gure 5), results in a larger share of consumption

coming from high cost mines which in itself is a source of welfare loss. The example

shows that, even in the short-run, this welfare loss, can outweigh the gain in consumer

surplus enjoyed through larger production and a lower price.
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Figure 2: Price path for nh = 1 and nh = 2

Figure 3: Change in instantaneous social welfare when nh changes from 1 to 2
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Figure 4: Extraction path of the high costs �rm for nh = 1 and nh = 2

Figure 5: Total extraction path for nh = 1 and nh = 2
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The calculations performed here have been done for other parameter sets as well.

Qualitatively the results are una¤ected.

5 Conclusions

We have fully characterized the open-loop Nash equilibrium in the case of �oil�igopoly

in a general case where �rms may have di¤erent extraction costs and initial stocks

of the resource. We have then used this equilibrium to derive the open-loop Nash

equilibrium for the cartel-versus-fringe model by considering one coherent cartel and

the number of fringe members going to in�nity.

The characterization of an equilibrium in this more general context than was

explored so far brings us closer to more realistic modelling of the complex reality of

the oil market and nonrenewable resource markets in general. The result we derive

regarding the welfare implications of increasing the number of �rms shows that the

intuition we have from standard, static, microeconomic analysis does not necessarily

follow through in the case of a dynamic oligopoly. In particular increasing competition

may reduce welfare. Competition policy for resource extracting industries requires a

speci�c analysis.
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Appendix A: Proof of Lemma 4

In the case S ! C l we have, from (6)

p(T ) =
1

nl + 1

�
�p+ nl

�
kl + �lerT

��
= �p

so that

kl + �lerT = �p (36)

At the transition time t1 we have from (15)

�p+ nl
�
kl + �lert1

�
=
�
nl + 1

� �
kh + �hert1

�
(37)

It follows from straightforward integration of (13) that

nl + nh + 1

nh
rSh0 =

�
�p+ nlkl �

�
nl + 1

�
kh
�
rt1 +

�
nl�l �

�
nl + 1

�
�h
� �
ert1 � 1

�
(38)

Equations (36) and (37) imply
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�l = e�rT
�
�p� kl

�
(39)

nl�l �
�
nl + 1

�
�h = �e�rt1

�
�p+ nlkl �

�
nl + 1

�
kh
�

(40)

Hence, after substitution into (38) we obtain (26).

We now derive (27). Integration of ql from (12) yields

t1Z
0

rql(s)ds =
nl

nl + nh + 1

��
�p+ nhkh �

�
nh + 1

�
kl
�
rt1 +

�
nh�h �

�
nh + 1

�
�l
� �
ert1 � 1

�	
(41)

and

TZ
t1

rql(s)ds =
nl

nl + 1

��
�p� kl

�
(rT � rt1)� �l

�
erT � ert1

�	
(42)

Summing up the two cumulative extractions gives

t1Z
0

rql(s)ds+

TZ
t1

rql(s)ds = rSl0 =
nl

nl + nh + 1

�
�p+ nhkh �

�
nh + 1

�
kl
�
rt1

+
nl

nl + nh + 1

�
nh�h �

�
nh + 1

�
�l
� �
ert1 � 1

�
+

nl

nl + 1

��
�p� kl

�
(rT � rt1)� �l

�
erT � ert1

�	
(43)

Substituting in the last term �l from �p�
�
kl + �lerT

�
= 0 yields

rSl0 =
nl

nl + nh + 1

�
�p+ nhkh �

�
nh + 1

�
kl
�
rt1 +

nl

nl + nh + 1

�
nh�h �

�
nh + 1

�
�l
� �
ert1 � 1

�
+

nl

nl + 1

�
�p� kl

�
(rT � rt1)�

nl

nl + 1

�
�p� kl

�
e�rT

�
erT � ert1

�
(44)
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Factorise nl

nl+1

�
�p� kl

�
in the last two terms

rSl0 =
nl

nl + nh + 1

�
�p+ nhkh �

�
nh + 1

�
kl
�
rt1 +

nl

nl + nh + 1

�
nh�h �

�
nh + 1

�
�l
� �
ert1 � 1

�
+

nl

nl + 1

�
�p� kl

� �
rT � 1 + ert1�rT � rt1

�
(45)

Adding and substracting e�rT in the last term

rSl0 =
nl

nl + nh + 1

�
�p+ nhkh �

�
nh + 1

�
kl
�
rt1 +

nl

nl + nh + 1

�
nh�h �

�
nh + 1

�
�l
� �
ert1 � 1

�
+

nl

nl + 1

�
�p� kl

� �
rT � 1 + e�rT +

�
�1 + ert1

�
e�rT � rt1

�
(46)

Multiplying both sides by nl+nh+1
nl

and splitting the last term yields

nl + nh + 1

nl
rSl0 =

�
�p+ nhkh �

�
nh + 1

�
kl
�
rt1 +

�
nh�h �

�
nh + 1

�
�l
� �
ert1 � 1

�
+
nl + nh + 1

nl + 1

�
�p� kl

� ��
�1 + ert1

�
e�rT � rt1

�
+
nl + nh + 1

nl + 1

�
�p� kl

� �
rT � 1 + e�rT

�
(47)

Note that the last term only includes T and not t1 and corresponds to the last term in

(27). Algebraic manipulation of the �rst three terms and substituting the �0s yields

(27).

Appendix B:

Consider

nl + nh + 1

nh
qh(0) = �p+ nlkl �

�
nl + 1

�
kh + nl�l �

�
nl + 1

�
�h (48)

where �h = e�rT
�
�p� kh

�
and

�l =
nh

nh + 1
�h +

e�rt1
�
�p+ nhkh �

�
nh + 1

�
kl
�

nh + 1
(49)

In this appendix we show that qh(0) is a monotonicaly decreasing function of Sl0: We
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have
nl + nh + 1

nh
@qh(0)

@Sl0
= nl

@�l

@Sl0
�
�
nl + 1

� @�h
@Sl0

(50)

Subtituting �l gives

nl + nh + 1

nh
@qh(0)

@Sl0
= nl

@

�
nh

nh+1
�h +

e�rt1(�p+nhkh�(nh+1)kl)
nh+1

�
@Sl0

�
�
nl + 1

� @�h
@Sl0

(51)

or

nl + nh + 1

nh
@qh(0)

@Sl0
= �n

l + nh + 1

nh + 1

@�h

@Sl0
� nlr

e�rt1
�
�p+ nhkh �

�
nh + 1

�
kl
�

nh + 1

@t1
@Sl0
(52)

with @�h

@Sl0
= �re�rT

�
�p� kh

�
@T
@Sl0
.

Moreover, writing (29) in the following form

r

�
Sh0 +

nh

nh + 1
Sl0

�
=

nh

nh + 1

�
�p� kh

� �
rT � 1 + e�rT

�
(53)

and using (28) we obtain

nl + nh + 1

nl
1

(1� e�rt1)r = r
�
�p+ nhkh �

�
nh + 1

�
kl
� @t1
@Sl0

(54)

and

1 =
�
1� e�rT

� �
�p� kh

� @T
@Sl0

(55)

Substituting both terms into (52) gives

nl + nh + 1

nh
@qh(0)

@Sl0
=
nl + nh + 1

nh + 1
re�rT

1

(1� e�rT )�n
l e�rt1

(nh + 1)

nl + nh + 1

nl
1

(1� e�rt1)r

(56)

or
@qh(0)

@Sl0
=

nh

nh + 1
r

�
e�rT

1� e�rT �
e�rt1

1� e�rt1

�
< 0 (57)
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