
 
 

 
Cahier 13-2009

 
TOWARD A RATIONAL-CHOICE FOUNDATION OF 

NON-ADDITIVE THEORIES 
 

Massimiliano AMARANTE 
 



 

 

CIREQ, Université de Montréal 
C.P. 6128, succursale Centre-ville 
Montréal (Québec)  H3C 3J7 
Canada 

 

téléphone :   (514) 343-6557 
télécopieur : (514) 343-5831 
cireq@umontreal.ca 
http://www.cireq.umontreal.ca 

        

 

 
 

 
 
Le Centre interuniversitaire de recherche en économie quantitative (CIREQ) regroupe des chercheurs 
dans les domaines de l'économétrie, la théorie de la décision, la macroéconomie et les marchés financiers, 
la microéconomie appliquée et l’économie expérimentale ainsi que l'économie de l'environnement et des 
ressources naturelles. Ils proviennent principalement des universités de Montréal, McGill et Concordia. Le 
CIREQ offre un milieu dynamique de recherche en économie quantitative grâce au grand nombre d'activités 
qu'il organise (séminaires, ateliers, colloques) et de collaborateurs qu'il reçoit chaque année. 
 
The Center for Interuniversity Research in Quantitative Economics (CIREQ) regroups researchers in the 
fields of econometrics, decision theory, macroeconomics and financial markets, applied microeconomics and 
experimental economics, and environmental and natural resources economics. They come mainly from the 
Université de Montréal, McGill University and Concordia University. CIREQ offers a dynamic environment of 
research in quantitative economics thanks to the large number of activities that it organizes (seminars, 
workshops, conferences) and to the visitors it receives every year. 

 
 
 

Cahier 13-2009 
 

TOWARD A RATIONAL-CHOICE FOUNDATION OF 
NON-ADDITIVE THEORIES 

 
Massimiliano AMARANTE 

 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ce cahier a également été publié par le Département de sciences économiques de 
l’Université de Montréal sous le numéro (2009-12). 

This working paper was also published by the Department of Economics of the 
University of Montreal under number (2009-12). 
 
Dépôt légal - Bibliothèque nationale du Canada, 2009, ISSN 0821-4441 
Dépôt légal - Bibliothèque et Archives nationales du Québec, 2009 
   ISBN-13 : 978-2-89382-584-7 



TOWARD A RATIONAL-CHOICE FOUNDATION OF
NON-ADDITIVE THEORIES

MASSIMILIANO AMARANTE

Université de Montréal et CIREQ

Abstract. A classical argument of de Finetti holds that Rationality implies

Subjective Expected Utility (SEU). In contrast, the Knightian distinction be-

tween Risk and Ambiguity suggests that a rational decision maker would obey

the SEU paradigm when the information available is in some sense good, and

would depart from it when the information available is not good. Unlike de

Finetti�s, however, this view does not rely on a formal argument. In this pa-

per, we study the set of all information structures that might be availabe to a

decision maker, and show that they are of two types: those compatible with

SEU theory and those for which SEU theory must fail. We also show that

the former correspond to "good" information, while the latter correspond to

information that is not good. Thus, our results provide a formalization of

the distinction between Risk and Ambiguity. As a consequence of our main

theorem (Theorem 2, Section 8), behavior not-conforming to SEU theory is

bound to emerge in the presence of Ambiguity. We give two examples of sit-

uations of Ambiguity. One concerns the uncertainty on the class of measure

zero events, the other is a variation on Ellberg�s three-color urn experiment.

We also brie�y link our results to two other strands of literature: the study of

ambiguous events and the problem of unforeseen contingencies. We conclude

the paper by re-considering de Finetti�s argument in light of our �ndings.

1. Introduction

In a problem of decision making under uncertainty, a decision maker has to

rank a set of alternativesA. Following Savage [17], these are modeled as mappings
(S;�) �! X, where (S;�) is a measurable space of states of the world and X

Key words and phrases. Rationality, Expected Utility, Non-additive theories, Information, Am-
biguity
JEL classi�cation: D81
I bene�ted from comments and suggestions from Tzachi Gilboa, Fabio Maccheroni, Massimo
Marinacci, Rich McLean and Bill Zame.
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2 MASSIMILIANO AMARANTE

is a space of consequences. Many models of decision making such as Subjective

Expected Utility (SEU), Choquet Expected Utility (CEU) or Maxmin Expected

Utility (MEU) focus on decision makers whose ranking % of the alternatives can
be represented by means of a real-valued functional I : A �! R, that is if f ,
g 2 A then

f % g iff I(f) � I(g)

The present paper aims at addressing the following question. Suppose that the

decision maker�s ranking is represented by a functional I : A �! R; What prop-
erties does I have to have for the decision maker to be considered "rational"?

Two seemingly incompatible answers are well-known. On the one hand, a clas-

sical argument of de Finetti holds that Rationality implies SEU. On the other

hand, the Knightian distinction between Risk and Uncertainty (Ambiguity, in

the current terminology) suggests that a rational decision maker would obey the

SEU paradigm when the information available is in some sense good, and would

depart from it when the information available is not good. While the �rst view-

point relies on a formal argument (see Section 2 in this paper), it is not so for the

second. Here, after reviewing the main ideas underlying the Knightian distinction

as well as the fundamental structure of a wide class of models of decision making

(Sections 3 to 6), we study (Section 7)) the set of all information structures that

might be availabe to a decision maker. Our main result (Theorem 2, Section 8)

unveils that information structures are of two types: those compatible with SEU

theory and those for which SEU theory must fail. The former describe situations

where the decision maker has the ability of distinguishing across all the scenar-

ios that are relevant to his decision problem, while the latter describe situations

where the decision maker lacks the ability to do so (Section 9). Transparently,

one can interpret them as corresponding to "good" and "not good" informa-

tion, respectively. These considerations come together into a formal de�nition

of Knightian Uncertainty/Ambiguity, which we give in Section 10. By virtue of

Theorem 2, behavior not-conforming to SEU theory is bound to emerge in the

presence of Ambiguity. In Sections 11 and 12, we give two examples of situa-

tions of Ambiguity. One concerns the uncertainty on the class of measure zero

events, the other is a variation on Ellberg�s three-color urn experiment. Section

14 brie�y links the results of this paper to two other strands of literature: the

study of ambiguous events and the problem of unforeseen contingencies. Section
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15 concludes by brie�y re-considering de Finetti�s argument. Four appendices

supplement the material in the main text.

2. Rationality and Expected Utility

Following the seminal papers of Schmeidler [18] and of Gilboa and Schmeidler

[11], during the past twenty years decision theorists have focused almost exclu-

sively on non-additive theories, by which I mean theories that depart from the

Expected Utility paradigm. For the most part, this has been motivated by the

overwhelming experimental evidence indicating that, in many circumstances, ac-

tual people systematically violate the axioms of expected utility, in particular the

independence axiom. Yet, usually no attempt is made to reconcile non-additive

theories with some preconceived idea of rationality. This state of a¤airs has cre-

ated a disparity between the status of non-additive theories and that of SEU

theory, as the latter seems to be tightly related to a very appealing concept of

rationality. This relation is expressed by de Finetti�s famous no-arbitrage argu-

ment, which we now review.

Assume that the consequences associated with the various alternatives are

expressed directly in terms of "utils". Hence, we can view alternatives as real-

valued functions and, in fact, we may assume that the set of alternatives is the

set B(�) of bounded, �-measurable functions (S;�) �! R. Thus, an alternative
f 2 B(�) can be thought of as a stock that pays o¤ f(s) utils if state s 2 S

obtains. The starting point of de Finetti�s argument is the idea that if a decision

maker is to be considered rational, then he must not be subject to arbitrage.

This seems to be a very mild requirement; in fact, it would be hard to support a

de�nition of rationality that does not impose it. Now, suppose that the decision

maker�s ranking % is represented by a functional I : B(�) �! R, and suppose
that I is not additive. Then, by de�nition, there exist f; g 2 B(�) such that

I(f + g) 6= I(f)+ I(g). Without loss, assume that I(f + g) > I(f)+ I(g). Then,

there exist prices pf+g; pf and pg such that

I(f + g) > pf+g > pf + pg > I(f) + I(g)

At these prices, the decision maker is willing to buy the stock f+g and willing to

sell the stocks f and g. But, by making these trades with the decision maker, one

would be certain to make a pro�t, no matter which state of the world obtains.
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Thus, we see that if the decision maker must not be subject to arbitrage, then

his preference functional I : B(�) �! R must be additive. In a similar fashion,
the demand that the decision maker be immune to arbitrage leads to two more

properties of the functional I. First, I must be monotone, that is if f; g 2
B(�) are such that f(s) � g(s) for every s in S, then it must be the case that

I(f) � I(g). Second, by letting 1 denote the function identically equal to 1 on

S, then it must be the case that I(1) = 1. Summing up: if a decision maker

must be immune to arbitrage, then his preference functional I : B(�) �! R
must be additive, monotone and such that I(1) = 1. It is easy to see that

these three properties together imply that I must be linear and continuous when

B(�) is equipped with the sup-norm topology (see Appendix A). Then, the Riesz

representation theorem along with monotonicity and I(1) = 1 imply that there

exist a unique (�nitely additive) probability measure P on � such that for all

f 2 B(�)
I(f) =

Z
S

fdP

We thus reach the remarkable conclusion that Rationality =) SEU.

3. Why non-additive theories?

The conclusion reached in the previous section begs the obvious question: Why

focus on non-additive theories? Two answers of a di¤erent nature are usually en-

countered. The �rst distinguishes between the normative and the positive aspect

of a theory. The idea is that if one is concerned with the normative aspect only,

then by virtue of de Finetti�s argument only SEU theory should be considered.

Things would be di¤erent, however, if one is concerned with explaining actual

people�s behavior. In this respect, a vast experimental evidence not only shows

that actual people often systematically depart from the SEU paradigm, but also

that there are discernible patterns in people�s behavior. Hence, the interest for

non-additive theories. I �nd this answer dissatisfactory for the following reason.

Once we assume the validity of de Finetti�s argument, we are forced to conclude

that people who depart from the SEU paradigm are subject to arbitrage. Thus,

these people are going to su¤er losses, at least if there exists somebody capable of

exploiting their weaknesses. It is then to be believed that over time these people

would learn from their mistakes, modify their behavior and eventually approach
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the SEU paradigm: their departure from SEU should appear only as a temporary

accident.

The second answer goes back to the idea of Knightian Uncertainty. Here, one

takes steps from the observation that some of the implications of SEU theory

are too strong to be intuitively sound. For one thing, SEU implies that the

decision maker is always able (implicitly or explicitly) to assign probabilities to

all events in �. Yet, in many circumstances the information available does not

allow decision makers to do so. Thus, sound intuition suggests that precisely

in those circumstances one should observe a departure from SEU. Notice that

this view has two important implications. First, it must be the case that de

Finetti�s argument, if valid, relies implicitly on some assumption implying that

the information available to the decision maker is "good enough". Second, a

sound theory of decision making under uncertainty must account for the fact

that the decision maker�s behavior may vary substantially with the information

available to him. In particular, the idea of Knightian Uncertainty suggests that

the decision maker�s behavior must obey additivity when the information is "good

enough" and exhibit non-additivity when the information is not good enough.

The remainder of this paper is devoted to explore whether or not this view is

tenable.

4. Information and non-additivity

In the previous section, we identi�ed a possible reason for studying non-additive

theories: non-additivity might emerge in those circumstances where the informa-

tion available to the decision maker is not good enough. This hypothesis suggests

that, as a �rst step, we would look at situations where the information available

is (in some sense) not good, and compare them with similar situations where the

information available is good. This is the essence of Ellsberg�s experiments as

well as of an experiment devised by Gardenfors and Sahlin [7]. They consider the

problem of betting on a tennis match, and focus on two situations.1 In Situation

1, the decision maker is told that the two tennis players, player 1 and player 2,

are equally good. In contrast, in Situation 2 the decision maker is told that one

player is great and that the other is bad, but he is not told which one is which.

We see that the decision maker is explicitly given information, and there is no

1They actually consider three di¤erent situations, but we only focus on two of those.
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doubt that this information is qualitatively di¤erent across the two situations.

The similarity with Ellsberg�s experiments is obvious, and the same considera-

tions that we are going to make below could be made for Ellsberg�s experiments

as well.

In Situation 1, the information given to the decision maker transparently trans-

lates into the fact that one must assign a value of 1/2 to the event that player 1

wins the match. What about Situation 2? If one believes de Finetti�s argument,

then the rational decision maker must have a probability. Since the information

is symmetric in the labels 1 and 2 assigned to the players, this probability must

be symmetric in those labels. We then conclude that the decision maker must

assign a value of 1/2 to the event that player 1 wins the match. Thus, despite the

obvious qualitative di¤erence between Situation 1 and Situation 2, a de Finetti-

rational decision maker must exhibit the same behavior in both situations: since

the probability governing the decision maker�s behavior is the same, in Situation

2 the decision maker must take exactly the same set of bets that he would take in

Situation 1. Not surprisingly, this conclusion is not supported by the observation

of actual people�s behavior. In fact, in Situation 2 many people choose to not bet

at all (see [7]), a behavior that per se implies a violation of the SEU paradigm.

Another implication of the view that Rationality =) SEU is as follows. Sup-

pose that in each situation a large number of matches takes place, but the outcome

of each match is not observed by the decision maker. Suppose now that the de-

cision maker is asked to provide a point estimate e of the ratio x = (victories of

1= total number of matches). Equivalently, consider (from the viewpoint of the

decision maker) the maximization problem

max
e
� je� xj

It is easy to see that the value of the problem converges to 0 (as the number of

matches goes to in�nity) in Situation 1, while it is always �(1=2) in Situation
2. In particular, 1=2 is a best point-estimate for x in both circumstances, even

though in Situation 2 the decision maker is certain that this estimate is wrong.

Thus, the view that a rational decision maker must have a probability leads to

the bizzarre outcome of a best point-estimate which is known to be wrong. These

observations support, and perhaps strengthen, the point of the previous section:

in certain circumstances, not only can one not assign probabilities to all relevant
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events but also to insist that one would do so leads to behavior that can hardly

be considered rational.

5. Is non-additivity compatible with rationality?

In the previous sections, we reviewed de Finetti�s argument that Rationality

implies SEU; we then reviewed the idea of Knightian Uncertainty; �nally, we

saw that when the information is of a certain type, de Finetti�s idea leads to

questionable conclusions regarding the decision maker�s rationality. As stated in

Section 3, the remainder of the paper will be mainly devoted to exploring the

idea that non-additive behavior might emerge as a rational response to those

situations characterized by the fact that the information available is (in some

sense) not good. Our strategy will be as follows. First, we want to understand

what is the formal courterpart of statements like "the information is good" or

"the information is not good enough". This is a necessary and crucial step. The

formalization of the Knightian distinction between Risk and Ambiguity demands

that we would be able to distinguish among situations according to the quality

of the information available. Once this is accomplished, we are going to consider

the problem of whether or not it is possible to obey the SEU paradigm when

the information available is not good enough. We will �nd (Theorem 2, Section

8) that the answer is negative, thus providing the grounds for the emergence of

non-additive behavior in the presence of information which is "not good". We

will then re-consider examples à la Ellsberg as well as other types of examples.

Finally, we will re-consider de Finetti�s argument in light of our �ndings.

Notation: Throughout the paper, we will be using the following notation.
The set of bounded, �-measurable functions (S;�) �! R equipped with the sup-
norm is denoted by B(�). Its dual ba(�), the space of bounded charges on �, is

always endowed with the weak*-topology produced by the duality (ba(�); B(�)).

The subset of ba(�) consisting of the �nitely additive probability measures on

� is denoted by ba+1 (�). For C a weak*-compact, convex subset of ba+1 (�), a
weak*-continuous a¢ ne function C �! R is of the form  f (P ) =

Z
S

fdp, P 2 C,

for some f 2 B(�). The space of all weak*-continuous a¢ ne functions on C
equipped with the sup-norm is denoted by A(C). The mapping � : f 7�!  f is

the canonical linear mapping � : B(�) �! A(C). The Borel �-algebra on C is



8 MASSIMILIANO AMARANTE

denoted by B, and B(B) denotes the space of bounded, B-measurable functions
C �! R equipped with the sup-norm. Finally, the set of regular Borel measures
on C is denoted by P(C).

6. Additive vs non-additive theories: the point of departure

In [9], Ghirardato, Maccheroni and Marinacci isolated a core common to several

theories of decision making. This consists of the �ve axioms listed below. Let

A denote the set of all alternatives, and let Ac be that of constant alternatives,
that is of constant mappings (S;�) �! X. Assume that X is a mixture space

(see [3] and [10]), and let % denote the decision maker�s preference relation over
A.
A1 % is complete and transitive.
A2 (C-independence) For all f; g 2 A and h 2 Ac and for all � 2 (0; 1)

f � g () �f + (1� �)h � �g + (1� �)h

A3 (Archimedean property) For all f; g; h 2 A, if f � g and g � h then

9�; � 2 (0; 1) such that �f + (1� �)h � g and g � �f + (1� �)h.

A4 (Monotonicity) For all f; g 2 A, f(s) % g(s) for any s 2 S =) f % g.

A5 (Non-degeneracy) 9x; y 2 X such that x � y.

Then, Ghirardato, Maccheroni and Marinacci observed that alternative sixth

axioms correspond to alternative theories of decision making. For instance, one

obtains SEU, CEU and MEU as follows:

A6 (a) (SEU, Anscombe and Aumann [3]) For all f; g 2 A such that f � g,
1
2
f + 1

2
g � f ;

A6 (b) (CEU, Schmeidler [18]) For all f; g 2 A such that f � g, 1
2
f + 1

2
g � f

if f and g are comonotonic;

A6 (c) (MEU, Gilboa and Schmeidler [11]) For all f; g 2 A such that f � g,
1
2
f + 1

2
f % f .

As discussed above, we want to explore the idea that non-additive behavior

might emerge when the information available is in some sense not good. To

do so, we must focus on the point where SEU and non-additive theories depart

from each other. By virtue of the Ghirardato-Maccheroni-Marinacci�s result, this

demands that we would proceed as follows. First, we must fully characterize the

structure implied by the �rst �ve axioms. Once this is done, we can then ask what
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conditions have to be met for a certain sixth axiom to be valid. In particular, we

can ask what is the informational content (if any) embedded in the axiom that

delivers SEU.

The �rst step was accomplished in [2, Theorems 1 and 2], which yielded the

characterization below. Recall that axioms 1 to 5 imply that there exist a utility

function u : X �! R and a functional I : B(�) �! R such that for ~f; ~g 2 A
(see [11] and [9], for details)

~f % ~g iff I(u � ~f) � I(u � ~g)

For notational simplicity, throughout the paper we are going to indentify an act
~f 2 A with the corresponding function u � ~f = f 2 B(�).

Theorem 1 (Amarante [2]). A preference relation % on A satis�es axioms 1 to

5 i¤

(a) The functional I representing it factors as I = V � �, where � is the
canonical linear mapping B(�) �! A(C), C a weak*-compact, convex subset of
ba+1 (�) and V : A(C) �! R is monotone and comonotonic additive (hence, sup-
norm continuous).

In turn, condition (a) is equivalent to the following

(b)There exists a capacity � on the Borel subsets of C such that for any f 2
B(�)

I(f) =

Z
C

�(f)d�

Intuitively, Theorem 1 tells us that any behavior satisfying axioms 1 to 5

corresponds to (is represented by) an integration over priors when this operation

is performed in the sense of Choquet. It is now (deceivingly) easy to see what it

takes for SEU theory to obtain.

Corollary 1. A preference relation % on A is a SEU preference i¤ the capacity

in Theorem 1 is a measure (i.e., � 2 P(C)).

Proof. If � 2 P(C), then by [15, Proposition 1.1] � has a unique barycenter
P � 2 C, that is P � is such that

Z
C

�(f)d� = �(f)(P �) =

Z
S

fdP � for every

f 2 B(�); thus SEU obtains. Conversely, if the preference is SEU, then the

functional I is linear. By Theorem 1 part (a), since � is linear and sup-norm
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continuous, we conclude that V must be linear and sup-norm continuous. By

Hahn-Banach, V can be extended to a continuous linear functional on C(C),
the Banach space of all continuous functions on C equipped with the sup-norm,
and (via the Riesz representation theorem) there exists a unique regular Borel

measure representing it. That is, � 2 P(C). �

It remains to be seen what is the informational content (if any) embedded in

the requirement that the capacity � be a measure (equivalently, that V be linear

and continuous). We will study this in the next section.

7. Information

We now want to take a closer look at Corollary 1, and see what it really shows.

The Corollary says that a SEU decision maker can be thought of as somebody

who (Lebesgue) integrates over priors. Formally, in the terminology of Theorem

1, this corresponds to the ability of integrating all the functions in �(B(�)). Thus,

whatever we mean by "information", we must conclude that what Corollary 1

really tells us is that the SEU decision maker has enough information to integrate

all the functions in �(B(�)). Equivalently, suppose that we have formalized the

concept of information, that is we have associated the intuitive idea of information

to a class of mathematical objects. Then, Corollary 1 says that the mathematical

object corresponding to the decision maker in Corollary 1 contains (an equivalent

of) the class of Borel subets of C. This is so because knowledge of this class is
necessary to be able to integrate all the functions in �(B(�)).

These considerations suggest that we should look deeper into the concept of

information and into its formalization. The reader should notice that we have

been speaking of information about the set of measures C. In passing, we observe
that this is the type of information that decision makers are given in the Ellsberg�s

experiments (the con�gurations of the urns), in those of Gardenfors and Sahlin

(the ability of the players) and, to our knowledge, in all those circumstances

associated with systematic departures from SEU. At any rate, information of the

form "the true state belongs to the set A � S" can always be trivially expressed

as information about the set C.

7.1. What is information? In its most basic aspect, "information" has to do
with the ability of distinguishing among things and, ultimately, this boils down
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to the ability (or lack thereof) of saying that A has a certain property that

B does not have. It is easy to translate this idea into a basic mathematical

concept. Suppose that we are interested in a certain collection of things, like the

collection C of measures on (S;�) encountered above. By de�nition, any subset
of C corresponds to a certain property: it is the collection of all those elements
of C that have that property. Given two points P and Q in C, a decision maker
can distinguish between P and Q if he can point at a property that P has and

Q does not have, and cannot distinguish between P and Q if he does not know

of one such property. Equivalently, he can distinguish between P and Q if he

can point at a subset of C which contains P but does not contain Q. Thus, the

information that a decision maker has about a certain set E is described by the

list of all the properties he has knowldege of, which, in turn, corresponds to a

certain collection of subsets of E. Formally,

De�nition 1. Let E be a set. An Information about E is a pair (E; E), where E
is a collection of subsets of E.

7.2. The informational content of Corollary 1. We can now formally de-
scribe the information available to the decision maker of Corollary 1.

Corollary 2. A preference relation % on A is a SEU preference i¤

(a) The capacity in Theorem 1 is a measure; and

(b) The decision maker�s information about C contains the Borel �eld generated
by the weak*-topology on C.

As we discussed above, part (b) of Corollary 2 describes explicitly the condition

� implicit in Corollary 1 � that the decision maker is able to integrate all the

functions in �(B(�)).

We have been wanting to explore the hypothesis that a rational decision maker

obeys the SEU paradigm when the information available to him is good, and

departs from it when the information is not good. So the result in Corollary 2

begs the obvious question: Is the information described by the Borel �eld good

or not good? The Borel �eld generated by the weak*-topology on C separates
points. This means that for any two points P and Q in C, the decision maker
always knows of a property that P has and Q does not have. Clearly, this is

very good information as things cannot get better than this. For a more concrete

depiction of the situation, the reader should think of a decision maker who is
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going to observe the realizations associated with a certain phenomenon, and who

wants to test the hypothesis that the sample is drawn from process P rather than

process Q, with C being the set of all possible processes. To say that the decision
maker�s information about C separates points in C concretely means that, for any
two points P and Q in C, (a) the decision maker is able to test the hypothesis
that the true process is P rather than Q; and (b) he knows that there exists an

observable sample for which the hypothesis is either accepted or rejected.

Summing up, the result of Corollary 2 is consistent with the hypothesis that a

rational decision maker obeys SEU theory when the information available to him

is good. Yet, Corollary 2 does not say anything about what happens when the

information available is not as good as that described by the Borel �eld.

7.3. Coarse information structures. We now turn our attention to those sit-
uations where the information available about C is not as good as that described
by the Borel �eld B generated by the weak*-topology on C. What we have to
do is to study how the decision maker�s behavior varies when his information is

a proper sub-collection of B. We will limit our attention to sub-collections that
are sub-algebras of B; in fact, sub-algebras generated by partitions of C. Consid-
eration of more general collections is certainly possible by virtue of De�nition 1,

but we do not believe that that would add to the conceptualization that we will

provide in this paper.

De�nition 2. An information structure on (C;B) is a triple f(C;B); I;BIg,
where I is a partition of C and BI is the sub-�eld of B generated by I.

The partition and the associated sub �-�eld state that the decision maker has

only partial information about C. In terms of the example discussed above, this
corresponds to the following situation (see Billingsley [4], pp. 57-58 and pp. 427-

29): on the basis of his information, the decision maker can construct a statistical

experiment whose outcome would tell him (in a statistical sense) in which element

of the partition the true process lies. However, such a decision maker would not

be able, on the basis of his information, to construct an experiment capable of

distinguishing among processes lying in the same cell of the partition.

7.4. Informational constraints. The partition of the decision maker of Corol-
lary 2 is the one generated by the identity mapping on C: the decision maker
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can distinguish between any two points in C. When his partition is coarser, his
ability of distinguishing between points is limited as is his ability of constructing

statistical experiments. The formal counterpart of these limitations consists of a

certain amount of restrictions that the functional V : A(C) �! R in Theorem 1

must satisfy. The remainder of this section is devoted to describing these con-

straints. Our exposition is going to be a bit pedantic. We feel, however, that

this, if not strictly necessary, is at least justi�ed by the developments of the next

sections.

Given a partition I of C, the functional V : A(C) �! R must respect two

types of constraints. First, the evaluation of a function ' 2 A(C) must respect
the information available; second, only those functions in A(C) for which "enough
information" is available can be evaluated. Limitations of the �rst type express

the fact that all that the decision maker can get to know is an element � of the

partition. For ' 2 A(C), let us denote by V (' j �) the evaluation of ' given that
� obtains. Then, we must have

(7.1) ';  2 A(C) and V (' j �) = V ( j �) for all � 2 I =) V (') = V ( )

That is, if two functions in A(C) are evaluated in the same way in correspondence
to each and every element of the partition, then they must be evaluated in the

same way unconditionally. Condition (7.1) can be restated in a more useful way.

Let C=I denote the quotient of C by the partition I, that is the space whose
elements are the cells of the partition. De�ne a mapping ~�V : A(C) �! RC=I

by ' 7�! (V (' j �))�2I ; that is, each function ' 2 A(C) is associated to the real
function de�ned on the quotient C=I that at point � (viewed as point in the
quotient) takes value V (' j �). Then, condition (7.1) says that the functional
V : A(C) �! R must be expressible by means of the diagram below2

A(C) ~�V�! RC=I

V & # V 0

R

2Of course, whenever V satis�es condition (7.1), then there exists a unique functional V 0 which
makes the diagram commute.
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The second type of constraint is that the decision maker can evaluate (measur-

ably) only those functions that are measurable with respect to his information,

which is represented by BI , the �-�eld generated by the partition. This is equiva-
lent to the requirement that the domain of the functional V 0 above must consists

of functions C=I �! R which are measurable with respect to the canonical �-�eld
on C=I.3 This leads to the following observation: a function ' 2 A(C) can be
measurably evaluated if and only if ~�V (') is a measurable function C=I �! R.

Summing up, the decision maker can (measurably) evaluate all the functions in

A(C) while respecting his information if and only if two conditions are satis�ed:
(*) ~�V (A(C)) � B(C=I;B=I), where B=I denotes the �nest �-�eld which

makes the canonical projection measurable; and

(**) There exists V 0 : B(B=I) �! R such that V = V 0 � ~�V .

7.5. Bayesian information structures. A necessary condition for a decision
maker to be Bayesian is that his functional V in Theorem 1 is linear and (sup-

norm) continuous. Thus, V can be represented by a measure, a prior, on B.
For these decision makers, the information available is described not only by the

partition but also by the prior. For instance, if the prior is concentrated on a

single point P 2 C, then the decision maker is certain that P is the true scenario
independently of the restrictions imposed by the partition. Clearly, this is a

situation where the information available to the decision maker is very good: For

any Q 2 C, Q 6= P , the decision maker can test the hypothesis that the true

measure is Q, and will reject it with probability 0 of making an error. Thus, as

the example makes it clear, whenever we want to assess the quality of information

available to this type of decision makers, we would have to refer jointly to the

prior and to the partition. This motivates the following de�nition

3This is the �nest �-�eld on C=I for which the canonical projection (C;B) �! C=I is mea-
surable. It is easy to see that the �-�eld on C=I must be such that the canonical projection
is measurable. For, if not, we would reach the absurd conclusion that the decision maker has
more information than the one described by B. To see this, suppose, by the way of contra-
diction, that the decision maker has a �eld on C=I for which the canonical projection is not
measurable. Thus, there exists an event A in C=I for which ��1(A) =2 B. By knowing the set
C and his �eld on C=I, the decision maker has enough information to evaluate the bet ���1(A)
(�� denotes indicator functions): he would evaluate ���1(A) in the same way as he evaluates
the bet �A. This is a contradiction because, by de�nition, the evaluation of bets like ���1(A)
is not permissible on the basis of his information because ��1(A) is not an event.
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De�nition 3. A Bayesian information structure on (C;B) is a quadruple f(C;B); �; I;BIg,
where � is a regular Borel measure on (C;B), I is a partition of C and BI is the
sub-�eld of B generated by I.

Remark 1. The requirement that the measure � in the de�nition be a regular
Borel measure is motivated by the proof of Corollary 1. Consideration of wider

classes of measures, in particular of �nitely additive measures is possible. This

would only strengthen our results, as it is shown in Section 13.

When V is represented by a measure, the mapping ~�V in the diagram in Section

7 is the familiar conditional expectation operator, and the requirements in 7.4

correspond to the existence of a canonical system of conditional measures (see

Appendix C). Intuitively, the idea that SEU would obtain goes as follows. Given

his prior � on C and the informational constraints expressed by the partition I,
the decision maker computes a collection of conditional probabilities, one for each

element of the partition. Then, he averages these conditionals with the weights

that � gives to the corresponding elements of the partition, and SEU obtains. In

the next section, however, we are going to see that this is not guarateed to work.

8. The impossibility of being Bayesian

With Corollary 2 and the discussion following it, we have seen that it is possible

to conform to the SEU paradigm when the information available is very good,

in fact the best possible. In this section, we want to see whether or not one can

always conform to the SEU paradigm, independently of the information available.

We are going to make the following assumption on the set of measures C of
Theorem 1

Assumption: C is a Polish space.

The assumption is always satis�ed whenever C is �nite dimensional. More gen-
erally, in Appendix D we show that the assumption is satis�ed whenever (S;�)

is a Standard Borel space (see Appendix B, for a de�nition) and the decision

maker�s preference relation satis�es the axiom of Monotone Continuity (see Ap-

pendix D). The reason for introducing the assumption is technical: it allows us to

use a result of Rokhlin [16] on the characterization of non-measurable partitions,

whose de�nition we recall next. We stress that the concept refers to a property of
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the partition as a whole and not to a property of the sets making up the partition

which, in this paper, are always assumed to be measurable.

De�nition 4 (Rokhlin [16]). Let (L;�; �) be a Lebesgue space (see Appendix
B), and let I be a partition of L. Let the quotient L=I be endowed with the
measure structure induced by the canonical projection. The quotient L=I is said
to be countably separated if there exists a countable family of measurable subsets

of L=I which separates points. The partition I is called measurable if L=I is
countably separated.

As noted above, the assumption that the decision maker has a Bayesian infor-

mation structure is necessary for the validity of SEU theory. The theorem below

shows, however, that this condition is not su¢ cient. In fact, the theorem shows

that SEU theory fails if (and only if) the information structure consists of both a

prior with a non-atomic part and a non-measurable partition. We will comment

on these features extensively in the next sections.

Theorem 2. Let f(C;B); �; I;BIg be a Bayesian information structure on (C;B).
Assume that the prior � is not purely atomic and that � is not supported by a

single cell of the partition. Then, SEU obtains if and only if the partition I of C
is measurable.

The assumption that � is not supported by a single cell of the partition is

clearly necessary for the conclusion in the theorem. In fact, if � is supported by

a single cell, then (modulo sets of �-measure 0) the partition consists of a single

element, the conditional measure coincides with the prior and SEU obtains.

Proof. By the assumption that � is not purely atomic, � can be expressed as the

product of a purely atomic measure and a non-atomic one. Since a system of

conditional measures of a purely atomic measure always exists, we can assume

without loss that � is non-atomic. If I is measurable, then by Rokhlin�s Theorem
[16] there exists a canonical system of conditional probabilities f��g�2I . By using
De�nition 7 (Appendix C), it is straightforward to check that for every ' 2 B(B),
we have Z

C

'd� =

Z
C=I

Z
�

' j� d��d�0; � 2 I; ' 2 B(B)
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In particular, the function (
R
�

' j� d��)�2I is measurable. This means that the

conditional expectation operator TI : ' �! (
R
�

' j� d��)�2I satis�es the condition

range TI � B(B=I), andZ
C

'd� = V (') =

Z
C=I

Z
�

' j� d��d�0 = V 0 � TI(') ; 8' 2 B(B)

That is, both conditions (*) and (**) in Section 7.4 are satis�ed. Finally, recall

that the decision maker orders acts inB(�) by means of I = V 0�TI�� = V ��, and
that � is linear. Now, the statement follows by applying the Riesz representation

theorem.

Conversely, let I be nonmeasurable, and let f��g�2I be a system of conditional
probabilities, with each �� a non-atomic measure on �. By Rokhlin�s theorem,

f��g�2I cannot be canonical. Hence, 9' 2 B(B) such that either TI(') : C=I �!
R is nonmeasurable or

R
C
'd� 6=

R
C=I

R
�

' j� d��d�0. Either way, at least one of the

conditions (*) and (**) of Section 7.4 is violated. If such a ' belongs to range

�(B(�)), then we are done. Now, we are going to show that range �(B(�))

necessarily contains at least one such '.

To begin, observe that the (non-canonical) system of conditional probabilities

f��g�2I de�nes an operator ~T : B(B) �! RC=I by

 7! ~T ( ) where ~T ( )(�) =

Z
C

 d��

Also, observe that suppP� � �. Let

� =

8><>: 2 B(B) j (a) ~T ( ) 2 B(B=I); (b)
Z
C

 d� =

Z
C=I

Z
�

 j� d��d�0

9>=>;
B using standard arguments, it is easily checked (see for instance [1], Ch. 13)

that � is a linear subspace and a lattice. Now, let f ngn2N be a sequence in �;
CLAIM: If either  n %  2 B(B) or  n &  2 B(B), then  2 �.
Proof of the claim: Let  n %  2 B(B).
(a) By the Dominated Convergence Theorem (DCT), for every �� we haveR

C
 nd�� %

R
C
 d��, that is ~T ( n) % ~T ( ). Hence, ~T ( ) is a pointwise limit of
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measurable functions, and hence measurable. Moreover, since  2 B(B), ~T ( ) is
bounded, i.e. ~T ( ) 2 B(B=I).
(b) Observe thatZ

C

 d� = lim
n!1

Z
C

 nd� (by the DCT and  2 B(B))

= lim
n!1

Z
C=I

Z
�

 nd��d�
0 (because  n 2 �)

= lim
n!1

Z
C=I

~T ( n)d�
0

=

Z
C=I

~T ( )d�0 (by (a) and the DCT )

=

Z
C=I

Z
�

 j �d��d�
0

which completes the proof for the case  n %  . The other case is similar.

Now suppose, by the way of contradiction, that range �(B(�)) � �. Let K

denote the set of continuous, convex functions on C. Then, if 
 2 K there exists

([15], p. 19) f�mgm2N � A(C) � range �(B(�)) and a sequence f�ngn2N, with
�n = ^f� ig

k
i=1, such that �n % 
. The sequence f�ng � � because � is a lattice.

Then, by the above claim, 
 2 �, that is K � �. Since � is a linear space, it

follows that K�K � �. By the Stone-Weierstrass theorem, K�K is uniformly

dense in C(C), the set of continuous functions on C. Since C is a metric space,
for any closed set A � C, there exists ([1], Corollary 3.14) f�ngn2N � C(C) such
that �n & �A, where �A denotes the indicator function of A. Since K � K is

uniformly dense in C(C), for each n 2 N, there exists fhnkgk2N � K � K such

that hnk ! �n uniformly as k !1. Now, let k0 2 N be such that

�0(P )� 1 < h0k0(P ) < �0(P ) + 1 ; 8P 2 C

Then, the function

g0 = h0k0 + 2
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is in � because � is a linear space, and satis�es

�0(P ) + 1 < g0(P ) < �0(P ) + 3 ; 8P 2 C

Next, let k1 2 N be such that

�1(P )�
1

3
< h1k1(P ) < �1(P ) +

1

3
; 8P 2 C

Then, g1 = h1k1 +
2
3
2 � and satis�es

�1(P ) +
1

3
< g1(P ) < �1(P ) + 1 8P 2 C

Moreover, for every P 2 C, we have

g1(P ) < �1(P ) + 1 � �0(P ) + 1 < g0(P )

Inductively, de�ne

gn = hnkn +
2

3n

Then, fgngn2N � �, gn+1(P ) < gn(P ) 8P 2 C, and

sup
P2C

jgn(P )� �n(P )j <
1

3n�1

Now, the inequality

jgn(P )� �A(P )j � jgn(P )� �n(P )j+ j�n(P )� �A(P )j

shows that gn & �A. [Notice that gn(P ) > �n(P ) +
1
3n
� �A(P )]

By the above claim, we then have �A 2 � for any closed set A � C. Next,
observe that:

(i) �C 2 � because the function 1 2 A(C) � �;
(ii) if �A; �B 2 � and A � B, then �BnA = �B � �A 2 � because � is a linear

space;

(iii) if An % A and
�
�An

	
� �, then �An % �A and �A 2 � by the claim

above.

Hence, we conclude that D = fA 2 C j �A 2 �g is a Dynkin system, which
contains all closed sets. Hence, D = B (the Borel �-algebra generated by the
topology on C). But now, it follows that � contains all the simple functions

(because � is a linear space) and since f ng � � and  n %  imply  2 �, we
conclude that � = B(B), a contradiction. �
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9. The meaning of the non-measurability of the partition

In the previous section, we have identi�ed the class of information structures

for which SEU theory fails. Two ingredients are necessary: the prior has to be

di¤used and the partition has to be non-measurable. Now, we want to understand

whether or not these information structures are the ones, and the only ones, that

correspond to the intuitive notion of information which is "not good enough".

The condition that the prior be di¤used is quite transparent. A purely atomic

prior, being concentrated on a countable number of points, is clearly associated

to very good information: modulo sets of measure zero, the set C consists of
countably many points and, by de�nition, the decision maker can distinguish

between any two of them. Thus, this is a case where the information available

is the best possibile. Correspondingly, the quotient space is trivially countably

separated, the partition is measurable and SEU theory obtains. So, the condition

that the prior have a non-atomic part is necessary if we want to talk of information

which is, in some sense, not good. By Theorem 2, the issue now boils down to

understanding the meaning of the condition that the partition be non-measurable.

In this section, we are going to elucidate this by means of two examples. The goal

is to highlight the following feature: a partition is non-measurable if the decision

maker cannot distinguish, on the basis of his information, between (at least two)

cells of the partition.

The examples we are going to describe are the most popular examples of non-

measurable partitions. They are: (1) the partition of the torus T 2 by lines of

irrational slope �; (2) the partition of the unit interval by means of the equivalence

relation x � y if and only if y = x + � (mod 1), where � is a �xed irrational

number.

Topological properties. Example (1): Begin by considering the unit square

along with a partition of it into lines of irrational slope �. Clearly, there are

uncountably many of such lines. From the square, obtain the torus T 2 by gluing

its sides. The original partition of the square produces a partition of the torus

into spirals. Since the original lines had irrational slope, each spiral revolves

around the torus without ever meeting itself, and it is easily seen that each spiral

is dense for the usual topology of T 2. De�ne an equivalence relation on the torus

by declaring two points equivalent if and only if they belong to the same spiral.

Clearly, there are uncountably many equivalence classes. Now, suppose that the
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decision maker�s information about the torus consists of its topology, that is the

class of open subsets of the torus. As we said, an open set corresponds to a certain

property, and suppose that the decision maker tries to distinguish between any

two spirals on the basis of that property. Since each spiral is dense in the torus, all

the equivalence classes intersect that open set. Thus, the decision maker cannot

distinguish among spirals on the basis of that property. But, the denseness of

each spiral implies that the situation is the same for any other open set. Hence,

the inability of distinguishing among spirals. The property that each equivalence

class is dense (and meager) translates into a property of the quotient space: its

topology (the �nest topology which makes the canonical projection continuous)

does not separate points. In fact, it is easy to see that the only closed sets in

the quotient are the empty set and the whole quotient. Thus, while as a set

the quotient has uncountably many points, as a topological space the quotient

behaves as a one-point space (equivalently, the only continuous functions on the

quotient are the constants).

Example (2): Consider the mapping from the unit interval into itself given

by f : x 7�! x + � (mod 1). For � irrational this mapping has no �xed point.

De�ne an equivalence relation on the unit interval by x � y i¤ 9n 2 N such that
y = fn(x) (fn is the nth iterate). One can see that each equivalence class is dense

in [0; 1], and that the same conclusion about the quotient as seen above obtains.

As the reader has certainly noticed, the two examples are essentially the same.

Below, we treat them simultaneously.

Measure space properties. Consider again example (1). Now, let T 2 be endowed

with the usual measure structure, and let � denote the partition of the torus into

spirals. It is clear that each spiral is a measurable subset of T 2. The problem

of �nding a countable separating family (De�nition 4) for � is equivalent to the

problem of �nding a countable separating family for the partition � of the unit

circle T de�ned as follows. Two points x; y 2 T are in the same cell of the

partition � if and only if 9n 2 N such that y = x + n� (mod 1). Hence, if we

de�ne the map

r� : T ! T by x 7�! x+ � (mod 1)

we see that the elements of the partition are precisely the r�-invariant subsets

of T . It is well-known [5], that the map r� is ergodic, that is every r�-invariant
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subset has either measure zero or measure one. This shows that the partition � of

T 2 is nonmeasurable. Equivalently, the quotient T 2=� behaves, when considered

as a measure space, as a one-point space, that is the only integrable functions are

constant almost everywhere.

10. A formalization of Knightian Uncertainty

As we saw above, what happens when the partition is non-measurable is that

for each and every property that the decision maker knows of, each cell of the

partition has at least a point that has that property. Equivalently, on the basis

of his information the decision maker is unable to distinguish among the di¤erent

cells of the partition. The intuition in terms of statistical experiments is similar:

for each and every outcome the decision maker might observe, there is a process

in each cell of the partition that in consistent with that outcome. In contrast,

when the partition is measurable, there always exists a property that the decision

maker knows of, and that allows him to distinguish between any two equivalence

classes. Thus, the concept of non-measurable partition is the formal conterpart

of the intuitive idea of insu¢ cient information. We record this in the following

de�nition.

De�nition 5. A decision maker faces Knightian Uncertainty (or Ambiguity)

whenever his information about the set C is described by a quadruple f(C;B); �; I;BIg
(see De�nition 3) with the following properties:

(i) � contains a non-atomic part;

(ii) � is not concentrated on a single equivalence class;

(iii) the partition I (modulo �-measure zero events) is non-measurable.
In correspondence to all other information structures, the decision maker faces

(Knightian) Risk.

Theorem 2 can now be reformulated as follows: If the decision maker faces

Knightian Uncertainty, then he cannot obey the SEU paradigm.

We have thus completed the program outlined in Section 5. We have par-

titioned the set of all (Bayesian) information structures into two subsets: one

represents those information structures which describe good information, and

corresponds to situations of Risk; the other represents those information struc-

tures which describe information which is not good, and corresponds to situations
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of Ambiguity. A Bayesian decision maker obeys SEU theory when he faces Risk,

and departs from it when he faces Ambiguity.

The next question we have to ask is how substantial this is. That is, is our

concept of Ambiguity representative of only some mathematical pathology with

no bearing on actual decision makers, or rather is it descriptive of situations faced

by actual decision makers? In the next sections, we are going to show, by means

of examples, that the concept of Ambiguity in De�nition 5 is far from being a

mathematical curiosity.

11. Uncertainty on the measure zero class

In this and in the example of the next section, we are going to assume that

the state space (S;�) is an uncountable Polish space. By the Borel Isomorphism

Theorem (Appendix B), without loss we can think of (S;�) as of the interval

[0; 1] equipped with its usual Borel structure. For the purpose of interpretation,

the assumption that S is uncountable deserves some explanation. Given a set C
of measures on (S;�) and a partition I of C, we are going to provide examples
where knowledge of the Borel �eld generated by the weak*-topology on C is
insu¢ cient for distinguishing among elements of the partition. Thus, while we

assume that S is uncountable, we also give the decision maker a tremendous

amount of information (knowledge of the Borel �eld of C), and this turns out to
be insu¢ cient. Our motivation for considering an uncountable state space is that

such an assumption allows us to unveil the role of a certain symmetry property,

which we believe plays an important role in explaining departures from the the

SEU paradigm. Once the structure of the example is understood, it will not be

di¢ cult to give examples in the same vein where S is a �nite set but the decision

maker knows only a �nite number of properties (subsets) regarding the set C.
We will get back to this in Section 13. We stress, however, that the assumption

that S is uncountable is by no means necessary to establish the existence of non-

measurable partitions. In fact, as the �nite-dimensional examples in Section 9

show, non-measurable partitions of C easily obtain when S is a �nite set.
The �rst information structure that we consider is not only very natural, but

also has an obvious relevance to any theory of decision making. It consists of

partitioning the set of measures on � so that two measures are in the same cell of

the partition if and only if they are associated to the same collection of measure
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zero events in S. We assume that all the measures in C are countably addivitive.
This is the case, for instance, if a preference relation satis�es, in addition to

the axioms 1 to 5 seen above, the axiom of Monotone Continuity (see Appendix

D). Formally, for P;Q 2 ca(�) (ca(�)= countably additive measures on �), the
partition of ca(�) is de�ned by the equivalence relation

PEQ iff P � Q and Q� P

where � stands for absolute continuity, and two measures are equivalent if and

only if they are mutually absolutely continuous. Informally, the information

described by the partition E corresponds to statements like �The class of measure
zero events in � is either � or 	�, etc..

Theorem 3 (see Kechris and Sofronidis [13]). The partition E is nonmea-
surable.

As an immediate consequence, we have

Corollary 3. Let the decision maker�s information be given by the quadruple
f(C;B); �; E ;BEg, where E is the partition produced by the measure equivalence
relation. Assume that � contains a non-atomic part. Then, SEU obtains if and

only if the decision maker is a priori certain about the class of measure zero events

of S.

In other words, if the only information available to the decision maker regards

the class of measure zero events, and if the decision maker is uncertain about this

class (his prior on C is not concentrated on a single equivalence class), then the
decision maker cannot be Bayesian.

In order to see why SEU theory fails, let us try to integrate over C, C � ca(�),

by using a non-atomic prior �. It is clear that the evaluation of the relative

likelihood of (disjoint) events like Y = fP 2 C j P (A) = 0; A 2 �g; and Z =

fP 2 C j P (A) > 0; A 2 �g is necessary to determine the ranking of the acts.
This evaluation is equivalent to the evaluation of the indicator function �Y . If

the decision maker is uncertain about whether or not A has nonzero probability,

then supp� intersects both Y and Z. But, Y and Z are union of equivalence

classes from the measure equivalence relation, and the theorem states that such

equivalence relation behaves like the one in the torus example: events like Y and

Z are nonmeasurable with respect to the decision maker�s information. Hence,
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the decision maker cannot evaluate �Y . As a consequence, integrating over priors

is impossible: since the decision maker cannot assess the likelihood of Y and Z,

he cannot take the average of such likelihoods, neither with weights given by �

nor in any other way.

12. Ellsberg�s Paradox

12.1. Ellsberg�s three-color urn experiment. In this section, we consider
Ellsberg�s three-color urn experiment. Ellsberg�s two-urn experiment and Garder-

fors and Sahlin�s experiment of Section 4 are suitable for similar considerations.

In the three-color urn experiment, a decision maker faces bets whose domain is

an urn containing 90 balls. He is told that of those, 30 are red (R), while the

remaining are either black (B) or yellow (Y ) in unknown proportions. As it is

well-known, the following violation of the SEU paradigm is often observed

R � B

but

R [ Y � B [ Y
That is, the decision maker prefers betting on red rather than black, but he prefers

betting on "black or yellow" rather than "red or yellow". Notice that the decision

maker explicitly receives information about the set of possible con�gurations of

the urn, and that the information is symmetric with respect to the labelsB and Y .

What is especially interesting in Ellsberg�s experiment is that, in correspondence

to the symmetry of the information, one typically observes a strong symmetry

in the decision maker�s table of preferences: one can replace B with Y (and vice

versa) at any point in the table of preferences without changing the table itself.

We believe that this could hardly be considered an accident.

12.2. Modeling the symmetry in the information. Having numbered the
balls from 1 to 90, a con�guration of the urn is a speci�cation of the color of

each ball. Let us denote a con�guration by (S; c) to mean that elements of S

have been numbered and colored in a certain way. A con�guration is possible

if and only if the number of red balls equals 30. Now, consider two possible

con�gurations of the urn: one where the number of black balls is 20 and another

where the number of black balls is 40. The symmetry with respect to the labels

B and Y is evident. To see what this entails in terms of mathematical properties,
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let us begin by �xing an arbitrary con�guration of the urn, say one where the

�rst 30 balls are red, the next 50 are black and the �nal 10 are yellow. We

denote this by (S; c0) = f30; 50; 10g. Now, let us consider the con�guration

(S; c1) = f30; 40; 20g. We can think of (S; c1) as being obtained from (S; c0) by

means of the mapping g1 : (S; c0) �! (S; c1) de�ned by g1(si) = si, that is g1
keeps each ball in place, but the balls are now colored according to c1. Clearly, any

con�guration of the urn can be described in a similar fashion. We are concerned

with the relation existing between the con�guration (S; c1) and the con�guration

(S; c2) = f30; 20; 40g, which is produced by the mapping g2 : (S; c0) �! (S; c2).

For an arbitrary con�guration ci, let r : (S; ci) �! (S; r(ci)) be the mapping

which transforms black balls into yellow balls and vice versa. It is now easy to

see that the con�gurations (S; c1) and (S; c2) are linked by the following property:

the mappings g1 and g2 representing them are such that g1 = rg2r
�1. In such a

case, we say that mappings g1 and g2 are conjugate. When properly expressed,

this is a completly general fact: two con�gurations of the urn are the relabeling

of one another if the mappings representing them are conjugate.

12.3. A continuous version. We are going to consider a continuous version
of Ellsberg�s three-color urn experiment. The urn is the interval [0; 1], which

we should think of as partitioned into three subsets, labeled R, B and Y . The

set of bets is ff j f : [0; 1] �! R; f bounded and �-measurableg, where � is the
usual Borel �-algebra. The set of possible con�gurations of the urn is the set of

non-atomic measures on ([0; 1];�), which we denote by N ([0; 1]). Thus, a con�g-
uration P 2 N ([0; 1]) corresponds to the measure space ([0; 1];�; P ), which un-
der our assumptions is a Lebesgue space. By �xing a possibile con�guration, say

([0; 1];�; P0), as a reference point, the Isomorphism Theorem for Lebesgue Spaces

(see Appendix B) allows us to identify each con�guration ([0; 1];�; Pi) with an

invertible measure preserving transformation gi : ([0; 1];�; P0) �! ([0; 1];�; Pi).

Thus, the set of all possible con�gurations of the urn can be identi�ed to the group

G = Aut(P0) of invertible measure preserving transformations of ([0; 1];�; P0).

The notion of symmetry of two con�gurations of the urn is expressed by the

following de�nition.

De�nition 6. Two con�gurations, g1 and g2 in G, are the relabeling of one

another, g1 � g2, if there exists a r 2 G such that g1 = rg2r
�1.
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Thus the decision maker�s information consists of the partition generated by

this equivalence relation along with a prior on G, which speci�es that only those

measure spaces ([0; 1];�; Pi) such that Pi(R) = 1=3 should be considered.

Theorem 4 (see Hjorth [12, Theorem 1.2]). The partition associated to the
equivalence relation in De�nition 6 is nonmeasurable.

From this, just like in Section 11, it follows that

Corollary 4. If the decision maker�s prior over G contains a non-atomic part

and if the prior is not concentrated on a single equivalence class, then SEU fails.

13. Complements

13.1. Finitely additive measures. In De�nition 3 of Section 8, we demanded
that the decision maker�s priors over the set of measures C be countably additive.
As anticipated in the remark following De�nition 3, allowing for �nitely additive

priors only strenghtens our �ndings. In fact, if a prior � over C is �nitely additive
but not countably additive, then by de�nition there exists a partition I and a
function  2 B(B) such that

R
C
 d� 6=

R
C=I

R
�

 j� d��d�0. It su¢ ces to consider a

partition I = fA; fBigi2Ng where fBigi2N is a family of disjoint sets for which
� fails countable additivity. Thus, existence of non-measurable partitions is a

rather trivial matter when we allow for measures that are only �nitely additive.

13.2. More on the symmetry notion of Section 12. As we noted, the as-
sumption that the state space be uncountable is by no means necessary to es-

tablish the existence of non-measurable partitions. In fact, these appear even

when S is just a two-point set. In such a case, the set of measures on S is

isomorphic the interval [0; 1], and in Section 9 we have seen an explicit exam-

ple of a non-measurable partition of this set. The introduction in Section 11 of

the assumption that S be an uncountable set was motivated by our interest in

exploring the notion of symmetric con�gurations. We saw that that notion of

symmetry produces a non-measurable partition. The conceptualization and the

result obtained in the case of an uncountable S still turn out to be useful in the

case of a �nite S. The key observation (see Section 9) is that while we assumed

that S was uncountable, at the same time we endowed the decision maker with
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a tremendous amount of information (the Borel �eld generated by the weak*-

topology). Thus, while keeping exactly the same notion of symmetry, it makes

sense to ask what would happen in the case of a �nite S if the decision maker

had only a limited amount of information. In order to examine this problem,

let us suppose that S is a set of n points (endowed with the discrete topology)

but that the decision maker�s information on P (S), the set of all probabilities

on S, consists of only a �nite number of properties; for instance, it is described

by an algebra generated by a �nite number of sets. Having �xed a reference

measure, it is easy to see that a measure on S can be represented by means of

a matrix on Rn, and that two measures are in the symmetry relation discussed
in Section 12 if and only if the corresponding matrices, A and B, are linked by

the relation A = U�BU , where U is a (positive) unitary matrix (a matrix U is

a unitary matrix if U�U = I, where I denotes the identity matrix). Thus, the

ability of distinguishing between non-symmetric measures is the same as that of

distinguishing between non-unitarily equivalent matrices. An elementary result

in Linear Algebra states that two matrices are unitarily equivalent if and only if

they have the same set of eigenvalues. Hence, one needs to able to distinguish

between two vectors in Rn. Clearly, this is always possible if the information
available contains the Euclidean topology of Rn (which is countably generated),
but this ability might disappear if the information available is coarser. We thus

conclude that even in the case of a �nite S the notion of symmetry of Section 12

still leads to a failure of SEU theory.

14. Subjectively measurable events

In this section, we focus on decision makers whose information on (C;B) is given
by a partition I and a prior � and who, in addition, obey the SEU paradigm

conditional on each and every element of the partition. What we are going

to say applies without essential modi�cations to many other types of decision

makers (see the remark below). Focusing on those that are conditionally SEU,

however, makes the exposition less abstract and is in line with the assumptions

that we have made thus far. Given a partition I of C, decision makers who are
conditionally SEU are identi�ed by a collection, f��g�2I , of probability measures.
In the course of the proof of Theorem 2, we observed that a collection f��g�2I
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de�nes an operator ~T : �(B(�)) �! RC=I by

�(f) 7�! ~T (�(f)) where ~T (�(f))(�) =

Z
C

�(f)d��

When the decision maker faces Ambiguity in the sense of De�nition 5, Theorem

2 shows that the collection f��g�2I is necessarily non-canonical, and there exist
functions in �(B(�)), hence in B(�), that cannot be evaluated on the basis of

the decision maker�s information. The complement of this set in B(�) consists

of all those acts (i.e., functions in B(�)) that can be evaluated by the decision

maker on the basis of his information. By de�nition, this set is

�MA =

8><>:f 2 B(�) j (a) ~T (�(f))) 2 B(B=I); (b)
Z
C

�(f)d� =

Z
C=I

Z
�

�(f) j� d��d�0

9>=>;
where � is the decision maker�s prior on C. In particular, its subset

�ME = f�E 2 B(�) j �E 2 �MAg

describes all the events in � to which the decision maker can assign probabili-

ties. We will refer to elements of �MA as subjectively measurable acts and to

elements of �ME as subjectively measurable events. The basic properties of the

classes �MA and �ME are stated in the next proposition. The proposition also

highlights the link between the class �ME and the class UE of unambiguous

events in the sense of [9] and [14].

Proposition 1. �MA is a linear space. Consequently, the class �ME is non-

empty and is a �nite �-system (i.e., is closed under complementation and �nite

disjoint unions). Furthermore, UE � �ME. Finally, there exists a natural

measure N on �ME, de�ned by

N(E) =

Z
C

�(�E)d� ; E 2 �ME

where � is the decision maker�s prior on C.
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Proof. As noted in the proof of Theorem 2, the set

� =

8><>: 2 B(B) j (a) ~T ( ) 2 B(B=I); (b)
Z
C

 d� =

Z
C=I

Z
�

 j� d��d�0

9>=>;
is a linear subspace ofB(B). Since a function f 2 B(�) is subjectively measurable
if and only if �(f) 2 �, it follows that the class �MA is the set ��1(�(B(�))\�).
From the linearity of �, it immediately follows that this is a linear subspace of

B(�). Since constant functions always belong to (�(B(�))\�), the class �ME

always contains ? and S. Moreover, from the fact that �MA is a linear space,

it follows that �ME is closed under �nite disjoint unions.

If an event E 2 � is unambiguous in the sense of [9] and [14], then �(�E) is a
constant mapping on C, that is �E 2 ��1(�(B(�))\�), and UE � �ME. Finally,

�E 2 �ME implies
R
C
�(�E)d� =

R
C=I

R
�

�(�E) j� d��d�0. Hence, E 7!
R
C
�(�E)d� is

an additive set function on �ME. �

Remark 2. As anticipated, the notion of subjectively measurable events does not
require reference to a system of conditional probabilities. In fact, any functional

V satisfying condition (7.1), Section 7, produces a mapping �(B(�)) �! RC=I.
We can then de�ne the sets �MA and �ME just like above. The inclusion

UE � �ME still holds since constant functions on C=I are always measurable.

Of course, if the partition I is measurable, then SEU obtains, every event in
� belongs to �ME, every function in B(�) is in �MA, and the natural set

function on � is the "average" measure obtained through the integration over

priors theorem. If I is non-measurable and � is non-atomic, then �ME is a

proper subset of �.

14.1. Unforeseen contingencies. Bayesian decision makers cannot measurably
evaluate events that are not in �ME. For this reason, we should expect, for

instance, that such events would not be explicitly speci�ed in a contract involving

two or more such decision makers. In contrast, events in �ME are suitable of

evaluation, and contracts can be based on those. These considerations provide

a link with the problem of unforeseen contingencies as studied in [6]. In fact,

the class �ME is naturally linked to a notion of subjective state space, which is

in the spirit of [6]. Given the class �ME, de�ne a binary relation on S � S by
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s1 � s2 if and only if (modulo sets of N -measure 0)

s1 2 A() s2 2 A

whenever A 2 �ME. It is easily seen that � is an equivalence relation on S.

By de�nition, the quotient S= � consists of all events that the decision maker

can evaluate on the basis of his information. The class �ME and the function

N : �ME �! [0; 1] of the previous section de�ne a measure-like structure on

S= �. Only functions S= ��! R that are measurable with respect to this

structure can be evaluated and can, therefore, be included in a contract as possible

transfers among the parties. Thus S= � can be interpreted as a subjective state
space as points in S= � represent the only contingencies that the decision maker
would include in a contract. Notice that only the functions S �! R which are
constant of equivalence classes may correspond to measurable functions on S= �.
Functions S �! R which are not constant of equivalence classes can be thought
of as correspondences de�ned on the quotient as in [8]. By construction, these

correspondences do not admit measurable selections.

15. De Finetti re-considered

The results obtained in this paper make it clear that de Finetti�s argument relies

on the implicit assumption that the information available to the decision maker

is good information. Formally, de Finetti�s argument implies that the decision

maker has enough information to integrate all the functions on B(�). It follows

from Section 14 that this is the case if and only if B(�) = ��1(�(B(�))\�) which
occurs if and only if �(B(�)) = �. In turn, this occurs if and only if the decision

maker�s information corresponds to Risk and not to Ambiguity (De�nition 5).
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Appendix A: Rationality =) SEU

The proposition contained in this appendix �lls in the details of the argument

outlined in Section 2 that Rationality =) SEU. The proposition is well-known.

Its inclusion is motivated only by the need of making this paper reasonably self-

contained.

Proposition 2. Let I : B(�) �! R be additive, monotone and such that I(1) =
1. Then, there exists a unique �nitely additive probability measure P 2 ba(�)

such that for every f 2 B(�)

I(f) =

Z
S

fdP

Proof. Step 1 : For any f 2 B(�), I(�f) = �I(f).
By additivity, 1 = I(1) = I(1 + 0) = I(1) + I(0), which implies I(0) = 0.

From 0 = I(0) = I(f � f) = I(f) + I(�f), we conclude that I(�f) = �I(f) for
any f 2 B(�).
Step 2 : For any rational number � 2 Q and any f 2 B(�), we have I(�f) =

�I(f).

For any f 2 B(�) and any natural number n 2 N, additivity implies I(nf) =
nI(f). By this and Step 1, we then conclude that I(zf) = zI(f) for any relative

integer z 2 Z. Moreover for every z 2 Znf0g,

I(f) = I(
z

z
f) = zI(

1

z
f) =) 1

z
I(f) = I(

1

z
f)

If � 2 Q, then � = p=q with p; q 2 Z. By combining the previous observations,
we see that

I(�f) = I(
p

q
f) = pI(

1

q
f) =

p

q
I(f) = �I(f)

Step 3 : I is sup-norm continuous

For f; g 2 B(�), let frng � Q be a sequence of rationals which converges

from above to kf � gk1. From f = g + (f � g) and g = f + (g � f), by using

monotonicity, additivity, 1 = I(1) and the result in Step 2, we see that for any n

I(f) � I(g) + I(kf � gk1) � I(g) + rn

I(g) � I(f) + I(kf � gk1) � I(f) + rn
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Hence, for any n

jI(f)� I(g)j � rn

By taking the limit for n!1, we have

jI(f)� I(g)j � kf � gk1

that is the sup-norm continuity of I.

We can now conclude the proof. By combining Step 2 and Step 3, we see that

I is homogeneous, that is I(�f) = �I(f) for all f 2 B(�) and for all � 2 R.
Along with addivity, this implies that I is linear. By Step 3, I is also sup-norm

continuous. By the Riesz representation theorem, there exists a unique P 2 ba(�)
such that for every f 2 B(�)

I(f) =

Z
S

fdP

Finally, monotonicity of I implies that P is non-negative, and I(1) = 1 implies

P (S) = 1. �

Appendix B: Standard Spaces
A Polish space, (X; �), is a separable, completely metrizable topological space.

Given the topology � on X, the Borel ���eld is the one generated by the closed

sets. A Standard Borel space is a Polish space stripped down to its Borel structure.

Given two measurable spaces, (X1;B1) and (X2;B2), a mapping X1 �! X2 is

called a Borel isomorphism if it is a bijection and is bimeasurable.

Borel isomorphism theorem (see [19, Theorem 3.3.13]): Any two uncount-
able standard Borel spaces are Borel isomorphic.

A Standard Borel space along with a �nite nonatomic measure is a called a

Standard Lebesgue space. A measurable set in a Standard Lebesgue space is a set

which di¤ers from a Borel set by a set of measure zero.

Given two measure spaces, (X1;B1;m1) and (X2;B2;m2), a measurable map-

ping T : X1 �! X2 is a measure preserving transformation if for all E 2 B2 we
have

m1(T
�1(E)) = m2(E)
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If T is bijective and its inverse T�1 is also measure-preserving, then T is an

invertible measure-preserving transformation. Two measure spaces, (X1;B1;m1)

and (X2;B2;m2), are isomorphic if there exists an invertible measure preserving

transformation T : X1 �! X2.

Isomorphism of Lebesgue Spaces (see [20, Theorem 2.1]): Any two Stan-
dard Lebesgue spaces are isomorphic.

Appendix C: Conditional measures
Let (C;B; �) be a measure space, let I be a partition of C (modulo �-measure 0

events) and let C=I denote the quotient space endowed with the �nest �-�eld that
makes the canonical projection measurable. We recall the following de�nition.

De�nition 7. A canonical system of conditional measures associated to the par-

tition I is a family of measures f��; � 2 Ig, with the following properties
(i) for any A 2 B, the set A \ � is measurable in � for almost all � 2 C=I and

the function ��(A \ �) : C=I ! R is measurable; and
(ii) for any A 2 B,

�(A) =

Z
C=I

��(A \ �)d�0

where �0 is the image measure (pushforward) of � under the canonical projection

� : C �! C=I.

Appendix D: A Polish setting
In combination, the two assumptions below guarantee that the set of measures

C in Theorem 1 is a Polish space.

Standard State Space: The measurable space (S;�) is a standard Borel
space.

Let % be a preference relation satisfying axioms 1 to 5. Let %� denote the
unambiguous preference relation ([9], Sec. B.3) associated to %.

Axiom of Monotone Continuity (see [9]): For all x; y; z 2 X such that

y �� z, and all sequences of events fAngn�1 � � with An # ;, there exists
�n 2 N such that y �� xA�nz.

The Axiom of Monotone Continuity is equivalent to the property that all the

measures in Theorem 1 are countably additive ([9], Sec. B.3).
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Theorem 5. Let (S;�) be a standard Borel space. A preference relation % on A
satis�es axioms 1 to 5 and the axiom of Monotone Continuity i¤ the functional

I representing it factors as I = V � �, where
(i) � : B(�) �! B(B) is de�ned by � : f 7�!  f , where  f : C �! R is given

by  f (P ) =
R
fdP , P 2 C.

(ii) � is linear and sup-norm to sup-norm continuous;

(iii) C is a Polish space;
(iv) V : B(B) �! R is monotone and comonotonic additive (hence, sup-norm

continuous).

In the course of the proof, we will denote by �(ba(�); Y ) the weak topology on

ba(�) induced by a set of mappings Y .

Proof. FromTheorem 1, we know that C is a weak*-compact subset of (ba; �(ba(�); B(�))).
By the Axiom of Monotone Continuity, all the probabilities in C are countably
additive. By the assumption that (S;�) is standard Borel, it follows that all the

probabilities in C are regular. If we replace the topology �(ba(�); B(�)) with
�(ba(�); Cb(S)), then C remains compact because the new topology is weaker

than the original one. In particular, C is closed. Finally, (S;�) standard implies
that the space P(�) (=regular Borel measures on �) is Polish in the topology
�(P(�); Cb(S)), and we conclude that C is Polish as well.
Next, de�ne � like in the statement of the theorem. Thus, � : B(�) �! RC and

� is clearly linear. Since � is de�ned (pointwise) in exactly the same way as in

Theorem 1, the factorization established there obtains here as well. Since all the

measures in C are bounded and countably additive, the Monotone Convergence
Theorem implies that � is normal, that is

fn % f =) �(fn)% �(f); n 2 N

Let E 2 �, and let �E denote the indicator function of the set E. Then, �(�E) is
obviously bounded and it is well-known that �(�E) is measurable for the Borel �-

algebra generated by �(P(�); Cb(S)) ([1], Lemma 14.16); that is, �(�E) 2 B(B)
for all E 2 �. If h 2 B(�) is a simple function, then h can be written as

a �nite linear combination of indicator functions, and linearity of � along with

the previous conclusion imply that �(h) 2 B(B). Finally, if f 2 B(�) is any

function, then there exists a sequence of simple functions ffng � B(�) such that

fn % f , and normality of � implies that �(f) 2 B(B). We conclude that when C
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is equipped with the Polish topology �(P(�); Cb(S)), the linear mapping � takes
B(�) into a subset of B(B). Moreover, � is sup-norm to sup-norm continuous as
a consequence of the inequality

k�(f)� �(g)k1 = sup
P2C

����Z fdP �
Z
gdP

���� � sup
P2C

Z
jf � gj dP

� sup
P2C

Z
sup
s2S

jf � gj dP = kf � gk1

Finally, V is de�ned exactly as in Theorem 1. �
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