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Abstract

Controlled choice over public schools attempts giving options to parents while main-

taining diversity, often enforced by setting feasibility constraints with hard upper and

lower bounds for each student type. We demonstrate that there might not exist as-

signments that satisfy standard fairness and non-wastefulness properties; whereas con-

strained non-wasteful assignments which are fair for same type students always exist.

We introduce a “controlled” version of the deferred acceptance algorithm with an im-

provement stage (CDAAI) that finds a Pareto optimal assignment among such assign-

ments. To achieve fair (across all types) and non-wasteful assignments, we propose

the control constraints to be interpreted as soft bounds–flexible limits that regulate

school priorities. In this setting, a modified version of the deferred acceptance algo-

rithm (DAASB) finds an assignment that is Pareto optimal among fair assignments

while eliciting true preferences. CDAAI and DAASB provide two alternative practical

solutions depending on the interpretation of the control constraints.

JEL C78, D61, D78, I20.
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Atila Abdulkadiroğlu. We are grateful for his extensive comments and contribution to that paper. Ehlers
acknowledges financial support from the SSHRC (Canada).
†Ehlers: Department of Economics and CIREQ, Université de Montréal, Montréal, QC H3C 3J7 (corre-
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1 Introduction

School choice policies are implemented to grant parents the opportunity to choose the school

their child will attend. In order to create a diverse environment for students, school districts

often implement controlled school choice programs providing parental choice while maintain-

ing the racial, ethnic or socioeconomic balance at schools. Before school choice policies were

in effect, children were assigned a public school in their immediate neighborhood. However,

neighborhood-based assignment eventually led to socioeconomically segregated neighbor-

hoods, as wealthy parents moved to the neighborhoods of their school of choice. Parents

without such means had to send their children to their neighborhood schools, regardless of

the quality or appropriateness of those schools for their children. As a result of these con-

cerns, controlled school choice programs have become increasingly more popular across the

United States. This paper provides a foundation for such programs and introduces two new

algorithms with different desirable properties that can be readily adapted in practice.

There are many examples of controlled public school admission policies in the United

States. In some school districts, control over student assignment is enforced by a court order.

For instance, a Racial Imbalance Law that was passed in 1965 in Massachusetts, prohibits

racial imbalance and discourages schools from having student enrollments that are more than

50 percent minority. After a series of legal decisions, the Boston Public Schools (BPS) was

ordered to implement a controlled choice plan in 1975.1 Although BPS has been relieved of

legal monitoring, it still tries to achieve diversity across ethnic and socioeconomic lines at

city schools (Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005, 2006). Likewise, St. Louis

and Kansas City, Missouri, must observe court-ordered racial desegregation guidelines for

the placement of students in city schools.2 In contrast, the White Plains Board of Education

employ their nationally recognized Controlled Parents’ Choice Program voluntarily.3

Other types of control are also present. In New York City, “Educational Option” (EdOpt)

schools have to accept students across different ability ranges. In particular, 16 percent of

students that attend an EdOpt school must score above grade level on the standardized

English Language Arts test, 68 percent must score at grade level, and the remaining 16

1See http://boston.k12.ma.us/bps/assignmtfacts.pdf for a brief history of student assignment in Boston.
2Similarly, Section 228.057 of Florida Statutes requires each school district in the state to design a choice

plan. Section 228.057 emphasizes the importance of maintaining socioeconomic, demographic, and racial
balance within each school.

3The reason behind initiating the choice program was the Board’s “belief that balance of the
racial and ethnic diversity of the schools’ population would promote students’ understanding, appre-
ciation, and acceptance of persons of different racial, ethnic, social, and cultural backgrounds”(See
http://wpcsd.k12.ny.us/1info/index.html for more detail). Cambridge, MA has a similar policy of control
not only on racial diversity but on socioeconomic diversity as well.
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percent must score below grade level (Abdulkadiroğlu, Pathak, and Roth, 2005).4 Miami-

Dade County Public Schools control for the socioeconomic status of students in order to

diminish concentrations of low-income students at certain schools. Similarly, Chicago Public

Schools diversify their student bodies by enrolling students in choice options at schools that

are not the students’ designated neighborhood schools.5 Lastly, the Jefferson County School

District has an assignment plan that requires elementary schools to have between 15 and

50 percent of their students coming from a particular geographic area inside the district

that harbors the highest concentration of designated beneficiaries of the affirmative action

policy.6

In general, a crucial policy of most school choice programs (not only controlled choice

programs) is to give some students priority at certain schools. For example, some state

and local laws require that students who live in the attendance area of a school must be

given priority for that school over students who do not live in the school’s attendance area;

siblings of students already attending a school must be given priority; and students requiring

a bilingual program must be given priority in schools that offer such programs. All these

priority altering decisions, including the controlled choice, should be implemented while

preserving the notion of fairness.

Following Abdulkadiroğlu and Sönmez (2003), we can define an assignment to be fair

if there is no unmatched student-school pair where the student prefers the school to her

assignment and she has higher priority than some other student who is assigned a seat at

the school. In the context of school choice, there is justified envy if the assignment is not

fair. Abdulkadiroğlu and Sönmez (2003) show that the student proposing deferred acceptance

algorithm (also known as Gale-Shapley student optimal algorithm) finds the fair assignment

which is preferred by every student to any other fair assignment. Moreover, revealing prefer-

ences truthfully is a weakly dominant strategy for every student in the preference revelation

game in which students submit their preferences over schools first, and then the assignment

is determined via the students proposing deferred acceptance algorithm (DAA) using the

submitted preferences (Dubins and Freedman, 1981; Roth 1982).7

Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu (2005) consider a relaxed con-

4There are similar constraints in other countries as well. For example in England, City Technology
Colleges are required to admit a group of students from across the ability range and their student body
should be representative of the community in the catchment area (Donald Hirch, 1994, page 120).

5We refer the interested reader http://www.buildingchoice.org for an illuminating overview of inter-
district school choice programs including possible desegregation guidelines.

6More details on this policy are present on the “No Retreat” brochure on Jefferson Country School
District’s website (http://www.jefferson.k12.ky.us/Pubs/NoRetreatBro.pdf).

7Although for schools it is not a weakly dominant strategy to truthfully reveal their preferences in DAA,
Kojima and Pathak (2009) have recently shown under some regularity conditions that in DAA the fraction
of participants that can gain from misreporting approaches zero as the market becomes large.
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trolled choice problem by employing type-specific quotas. Control is imposed on the maximum

number of students from each racial/ethnic group that a school can enroll. Their proposed

solutions do not capture controlled choice to the fullest extent because they do not exclude

segregated schools in fair assignments. For example, consider a school that can enroll 100

students with hard upper bound of 50 Caucasian students. In this case, a student body of 50

Caucasian students would not violate the maximum quota, yet the school is fully segregated.

Such an assignment would be unacceptable for many school districts.

In order to provide a foundation for controlled school choice programs, a thorough analysis

of fairness and controlled choice requires a substantial generalization of the model. Extending

the model to fully capture controlled choice brings major difficulties. Following the laws of

a state or the policies of a school choice program (or of the school district), an assignment

is legally feasible (under hard bounds) (or politically acceptable) if both (i) every student is

assigned to a public school and (ii) at each school the desegregation guidelines are respected.

We incorporate these constraints in the definition of justified envy, thereby in the definition

of fairness. The nature of controlled choice imposes that a student-school pair can cause a

justified envy (or blocks) only if matching this pair does neither result in any unassigned

student nor violate the controlled choice constraints at any school.

This raises the question of existence of fair and legally feasible assignments in the con-

trolled school choice. We show that feasible student assignments which are fair may not

exist. Due to this impossibility, either fairness needs to be weakened in order to respect legal

constraints, or the interpretation of the legal constraints must be changed. We first focus

on the case where we relax the notion of fairness (while maintaining the hard bounds). In

this setting, a natural route is to allow envy only among students of the same type. Then,

for example, only Caucasian students can justifiably envy other Caucasian students (but

not any African-American students). It turns out that legally feasible assignments, which

are fair for same types, may not exist if we require additionally non-wastefulness (Balinski

and Sönmez, 1999). In our context, this condition requires that empty seats should not

be wasted if students claim them while the legal constraints maintained. A positive result

emerges if non-wastefulness is constrained: students can claim empty seats only if the re-

sulting assignment does not cause any envy among students of the same type. In particular,

a controlled version of the student proposing deferred acceptance algorithm followed by an

improvement mechanism (CDAAI) finds for each controlled school choice problem a legally

feasible assignment which is both fair for same types and constrained non-wasteful. The

resultant assignment is also Pareto efficient among the set of assignments that are fair for

same types and constrained non-wasteful. Unfortunately, CDAAI is not (dominant strat-

egy) incentive compatible. Indeed, we show that it is impossible to elicit true preferences in
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dominant strategies while maintaining fairness and the legal constraints.

Instead of relaxing the fairness notion, we can also re-interpret the legal constraints,

which are reflected as upper and lower bounds (floors and ceilings, respectively) for each

student type in the controlled school choice context. Most school districts administer floors

and ceilings as hard bounds, so a theoretical analysis of such policies is inarguably impor-

tant. However, applications of these hard bounds are quite paternalistic in the sense that

assignments can be forced despite student preferences. That is, with this specification school

districts end up not allowing students to take some available seats, even if there are no phys-

ical limitations. In contrast, we provide an alternative interpretation of these constraints

as soft bounds. To be more explicit, school districts may adapt a dynamic priority struc-

ture, giving highest priority to student types who do not fill their floors, medium priority

to student types who fill their floors and not their ceilings, and lowest priority to student

types who fill their ceilings. Yet, schools can still admit fewer students than their floor or

more than their ceiling as long as students with higher priorities do not veto this match. In

Section 4, we consider this soft bounds view: control policies promote the desired balancing

at schools, only when student preferences allow them to do so. In other words, soft bounds

policies give the parents an opportunity to establish desired balancing at schools, but do not

force them to achieve this balance.

With hard bounds, an assignment that is fair and non-wasteful might not exist even if

fairness is restricted to students with same types. However, with soft bounds the existence

of an assignment that is fair and non-wasteful is guaranteed. To show this, we consider

the student-proposing deferred acceptance algorithm with soft bounds (DAASB), in which

schools tentatively admit the set of students at each step with the dynamic priority structure

implied by the soft bounds view of floors and ceilings. Furthermore, we provide the following

connection between soft bounds and hard bounds. We show that all students weakly prefer

the outcome of this algorithm (under soft bounds) to any assignment that is strongly fair

across types and non-wasteful under hard bounds. In this sense, all students are better off

with soft bounds.

To summarize, we demonstrate that it is impossible to eliminate envy across different

types while fully respecting controlled school choice constraints, even though envy for same

types can be eliminated. On the other hand, if one considers the soft bounds view, all the

desirable properties of the deferred acceptance algorithm are restored: DAASB produces

a fair and non-wasteful assignment (which is Pareto optimal among fair and non-wasteful

assignments) and, furthermore, DAASB is group incentive compatible.

Although we focus on controlled school choice, all of our results equally apply to cen-

tralized matching programs where diversity constraints are wished to be implemented. For
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instance, a college admissions office that wants to avoid completely segregated student bod-

ies may use controlled policies. Other examples are entry-level labor markets where we may

wish to exclude gender segregated worker groups meaning that for each firm there are both

female and male workers among its hires. In labor markets we may even desire to control

for both race and gender.

Related Literature In a recent paper, Kojima (2010) considers a model where there

are two kinds of students (minority and majority) and only a quota for majority students. He

investigates the consequences of such affirmative action policies and shows that these policies

may hurt minority students, the purported beneficiaries. To overcome this shortcoming,

Hafalir, Yenmez and Yildirim (2011) propose affirmative action with minority reserves in

which schools give higher priority to minority students up to the point that the minorities

fill the reserves. They consider both deferred acceptance and top trading cycles algorithms.

They also perform simulations and conclude that minorities are on average better off with

minority reserves while adverse effects on majorities are mitigated.

Abdulkadiroğlu (2010) considers the same control environment as in this paper but pro-

poses different feasibility and fairness concepts. In particular, due to the non-existence of

feasible and fair student assignments, he relaxes feasibility by not requiring that all students

are enrolled at a school and then looks for fair assignments which are not dominated by any

other fair assignment. Budish et al. (2011) consider expected assignments satisfying control

constraints and determine when such expected assignments can be implemented by a lottery

over deterministic assignments satisfying the control constraints.

In a recent paper, Kamada and Kojima (2010) study entry-level medical markets with

regional caps: hospitals (or schools) are partitioned into regions and each region is controlled

by a cap (or ceiling) determining the maximal number of students that can be assigned

to the hospitals in that region. Similar to our context, they propose different stability

notions like “strong stability” and “stability”. Some of their results have a similar flavor

like ours: (i) strongly stable assignments do not exist (like fairness (for same types) and

non-wastefulness are incompatible under hard bounds for school choice with control) and

(ii) stable assignments exist (like fairness and non-wastefulness are compatible under soft

bounds) and (iii) their “flexible deferred acceptance algorithm” finds a stable assignment

and is incentive compatible (like DAASB finds a fair and non-wasteful assignment under soft

bounds and is incentive compatible).

The paper is organized as follows. Section 2 formalizes controlled school choice problem

and introduces our desirable criteria, namely fairness for same types and non-wastefulness.

Section 3 shows that there may not exist any feasible assignment which is both fair for same
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types and non-wasteful. Therefore, we constrain non-wastefulness and show that CDAAI al-

ways finds a feasible assignment which is both fair for same types, constrained non-wasteful

and Pareto efficient among assignments with the same properties. Section 3 also studies

incentive compatibility and shows that there may not exist any incentive compatible mech-

anism which is both fair for same types and constrained wasteful. In Section 4, we consider

controlled school choice problem with soft bounds and show that an adaptation of the de-

ferred acceptance algorithm achieves fairness and non-wastefulness under soft bounds, which

is also incentive compatible. Section 5 concludes. All proofs are given in Appendix A.

2 Controlled School Choice

A controlled school choice problem or simply a problem consists of the following:

1. a finite set of students S = {s1, . . . , sn};

2. a finite set of schools C = {c1, . . . , cm};

3. a capacity vector q = (qc1 , . . . , qcm), where qc is the capacity of school c ∈ C or the

number of seats in c ∈ C;

4. a students’ preference profile PS = (Ps1 , . . . , Psn), where Ps is the strict preference

relation of student s ∈ S over C, i.e., cPsc
′ means that student s strictly prefers school

c to school c′;

5. a schools’ priority profile �C= (�c1 , . . . ,�cm), where �c is the strict priority ranking

of school c ∈ C over S; s �c s′ means that student s has higher priority than student

s′ to be enrolled at school c;

6. a type space T = {t1, ..., tk};

7. a type function τ : S → T , where τ(s) is the type of student s;

8. for each school c, two vectors of type specific constraints qT
c

= (qt1
c
, . . . , qtk

c
) and qTc =

(qt1c , . . . , q
tk
c ) such that qt

c
≤ qtc ≤ qc for all t ∈ T , and

∑
t∈T q

t
c
≤ qc ≤

∑
t∈T q

t
c.

Here, qt
c

is the minimal number of slots that school c must by law allocate to type t

students, called the floor for type t at school c, whereas qtc is the maximal number of

slots that school c is allowed by law to allocate to type t students, called the ceiling for

type t at school c. The same model is studied by Abdulkadiroğlu (2010).
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In summary, a controlled school choice problem is given by(
S,C, (qc)c∈C , PS,�C , T, τ, (qTc , q

T
c )c∈C

)
.

When everything except PS remains fixed, we simply refer to PS as a controlled school choice

problem.

The set of types may represent different characteristics of students such as: (i) race;

(ii) socioeconomic status (determined by free or reduced-price lunch eligibility); or (iii) the

district where the student lives. Controlled choice constraints are imposed by law or the

policies of a state (via desegregation orders), and the school choice program has to comply

with these constraints.8

An assignment µ is a function from the set C ∪S to the set of all subsets of C ∪S such

that

i. µ(s) ∈ C for every student s;

ii. |µ(c)| ≤ qc and µ(c) ⊆ S for every school c;

iii. µ(s) = c if and only if s ∈ µ(c).

In words, µ(s) denotes the school that student s is assigned; µ(c) denotes the set of

students that are assigned school c; and µt(c) denotes the students of type t that are assigned

to school c, i.e., µt(c) = µ(c) ∩ St where St ≡ {s ∈ S : τ(s) = t} is the set of all type t

students.

Given two assignments µ and µ′, we say that µ Pareto dominates µ′ if all students

weakly prefer µ to µ′ and µ 6= µ′. Similarly, we say that an assignment µ is Pareto optimal

(or Pareto efficient) among the assignments satisfying certain properties if there is no

assignment which both satisfies these properties and Pareto dominates µ.

A set of students S ′ ⊆ S respects (capacity and controlled choice) constraints at

school c if |S ′| ≤ qc and for every type t ∈ T , qt
c
≤ |{s ∈ S ′ : τ(s) = t}| ≤ qtc. An assignment

µ respects constraints if for every school c, µ(c) respects constraints at c, i.e., for every

type t we have

qt
c
≤ |µt(c)| ≤ qtc.

As outlined before, the law of many states in the United States requires students to be

assigned to schools such that (i) at each school the constraints are respected and (ii) each

8Ehlers (2010) also considers the case when students have multi-dimensional types and when control con-
straints are imposed in terms of percentages. He demonstrates that these extensions are easily accommodated
to controlled school choice problems.
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student is enrolled at a public school. An assignment µ is (legally or politically) feasible

(under hard bounds) if µ respects constraints and every student is assigned to a school.

Later in Section 4, we are going to re-interpret assumption (i) and study controlled choice

with soft bounds.9

Obviously, a controlled school choice problem does not have a feasible solution if there

are not enough students of a certain type to fill the minimal number of slots required by

law for that type at all schools. Therefore, we assume that the number of students of any

type is bigger than the sum of the floors for that type at all schools, i.e., for each t ∈ T ,

|St| ≥
∑

c∈C q
t
c
. Similarly, in order not to leave any student unassigned we need to have

enough slots for each student type, that is |St| ≤
∑

c∈C q
t
c.
10 From now on we assume that

the legal constraints at schools are such that a legally feasible assignment exists. In Appendix

B we show that the existence of a feasible assignment is equivalent to finding a solution of

the so-called transportation problem (Nemhauser and Wolsey, 1999) which can be done in

polynomial time. If no feasible assignments exist, then the laws are not compatible with

each other and either they need to be modified (and this issue is out of this paper’s scope)

or we may reconsider the controlled choice constraints (which we discuss in Section 4).

What are desirable properties of feasible assignments in controlled school choice prob-

lems? The following notions are the natural adaptations of their counterparts in standard

two-sided matching (without type constraints).

The first requirement is that whenever a student prefers an empty slot to the school

assigned to her, the legal constraints are violated when assigning the empty slot to this

student while keeping all other assignments unchanged.11

We say that student s justifiably claims an empty slot at school c under the

feasible assignment µ if

(nw1) cPsµ(s) and |µ(c)| < qc,

9According to law, every student has a right to attend a public school. Hence, we assume that all
students are acceptable to every school. Moreover, we consider the case when students have to give a full
ranking of all schools. This is because if students are allowed to give shorter lists and admission process
requires them to be assigned to a school in their lists, students could simply include only their favorite
schools. This clearly may result in non-existence of feasible assignments. Here, students can still prefer their
outside options (going to a private school, or being homeschooled) to their assigned schools, nonetheless,
they are required to rank all schools.

10Note that these constraints are not sufficient for the existence of a feasible assignment. For example,
consider the problem consisting of three schools and three students. Each student has a different type. The
capacities are all equal to 1, the floors are all equal to zero, and the ceilings are given by qt1c1 = qt2c1 = qt3c1 = 1,
qt1c2 = qt2c2 = 0 and qt3c2 = 1, and qt1c3 = qt2c3 = 0 and qt3c3 = 1. There does not exist a feasible assignment because
student s1 or student s2 has to be left unassigned if the constraints at schools c2 and c3 are respected.

11This requirement is in the spirit of the property “non-wastefulness” introduced by Balinski and Sönmez
(1999).
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(nw2) q
τ(s)
µ(s) < |µτ(s)(µ(s))|, and

(nw3) |µτ(s)(c)| < qτ(s)c .

Here (nw1) means student s prefers an empty slot at school c to the school assigned

to him; (nw2) means that the floor of student s’s type is not binding at school µ(s); and

(nw3) means that the ceiling of student s’s type is not binding at school c. Hence, under

(nw1-3) student s can be assigned to an empty slot at the better school c without changing

the assignments of the other students and violating the constraints at any school. A feasible

assignment µ is non-wasteful if no student justifiably claims an empty slot at any school.

A well studied requirement of the literature is fairness or no-envy (Foley, 1967).12 In

school choice student s envies student s′ when s prefers the school at which s′ is enrolled,

say school c, to her school. However, the nature of controlled school choice imposes the

following (legal) constraints: Envy is justified only when

(i) student s has higher priority to be enrolled at school c than student s′,

(ii) student s can be enrolled at school c without violating controlled choice constraints

(at all schools) by removing s′ from c, and

(iii) student s′ can be enrolled at another school without violating constraints by removing

s′ from c in favor of s.

We say that student s justifiably envies student s′ at school c under the feasible

assignment µ if there exists another feasible assignment µ′ such that

(f1) µ(s′) = c, cPsµ(s) and s �c s′,

(f2) µ′(s) = c, µ′(s′) 6= c, and µ′(ŝ) = µ(ŝ) for all ŝ ∈ S\{s, s′}.

Because µ′ is feasible, (f2) simply says that (µ(c)\{s′}) ∪ {s} respects the controlled

choice constraints at school c and student s′ can be enrolled at school c′ = µ′(s′) such that

(µ(c′)\{s})∪ {s′} respects the controlled choice constraints at c′; in other words assigning s

a slot at c, s′ a slot at c′, and keeping all the other assignments intact does not violate any

controlled choice constraint at any school. A feasible assignment µ is fair across types (or

fair) if no student justifiably envies any student.

We also consider a weaker version of envy (and fairness) where envy is justified only if

both the envying student and the envied student are of the same type. If this is the case,

12See for example Tadenuma and Thomson (1991), for an excellent survey, also see Thomson (forthcom-
ing), Thomson (2000) and Young (1995).
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then (ii) and (iii) are always true since then the envying student and the envied student can

simply exchange schools. More formally, we say that student s justifiably envies student

s′ of the same type at school c under the feasible assignment µ if

(f1*) µ(s′) = c, cPsµ(s) and s �c s′, and

(f2*) τ(s) = τ(s′).

In (f1*), student s′ is enrolled at school c and both student s prefers school c to his

assigned school µ(s) and student s has higher priority to be enrolled at school c than student

s′. By (f2*), student s and student s′ are of the same type. Then we obtain a feasible

assignment when students s and s′ exchange their slots, i.e., choose µ′ as follows: µ′(s) =

µ(s′), µ′(s′) = µ(s), and µ′(ŝ) = µ(ŝ) for all ŝ ∈ S\{s, s′}. The assignment µ′ is feasible

because s and s′ are of the same type and µ was feasible. A feasible assignment µ is fair

for same types if no student justifiably envies any student who is of the same type.

3 Controlled School Choice with Hard Bounds

Our first result shows the difficulty in finding assignments that satisfy the legal constraints

together with other desirable properties such as fairness and non-wastefulness by establishing

two benchmark incompatibility results (even though we assumed that feasible assignments

exist).

Theorem 1 (i) The set of feasible assignments that are fair across types may be empty

in a controlled school choice problem.

(ii) The set of feasible assignments that are both fair for same types and non-wasteful may

be empty in a controlled school choice problem.

The proof of Theorem 1 is provided in Appendix A; and it is by means of examples.

In contrast to the literature on matching, our impossibility result is not obtained by

violating the responsiveness condition (or “substitutability”) of schools’ preferences over sets

of students, but by controlled choice. Clearly Theorem 1 is a negative result. We will see

later that the answer is affirmative to both (i) the existence of feasible assignments which are

fair for same types and (ii) the existence of feasible and non-wasteful assignments. Hence, in

controlled school choice problems we may retain fairness for same types or non-wastefulness

while giving up the other requirement.
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Giving up completely either fairness for same types or non-wastefulness may not be

satisfactory for a controlled school choice program. We hence keep fairness for same types

and weaken non-wastefulness to the following criterion.

We say that a feasible assignment µ is constrained non-wasteful if: student s justifi-

ably claims an empty slot at school c under µ implies that the assignment µ′ (where µ′(s) = c

and µ′(s′) = µ(s′) for all s′ ∈ S\{s}) is not fair for same types.

If the feasible assignment µ is fair for same types and constrained non-wasteful, then

the above definition is equivalent to the requirement that whenever a student s of type

t justifiably claims an empty slot at school c under µ, then some other type t student s′

justifiably envies student s at school c under the assignment µ′ (where µ′ is defined as

above).

The idea of feasible assignments which are both fair for same types and constrained non-

wasteful is similar to the one of “bargaining sets”: if a type t student s has an objection to µ

because s claims an empty slot at c, then there will be a counterobjection once s is assigned

to c since some other type t student will then justifiably envy s at c. Roughly speaking,

an outcome belongs to the “bargaining set” if and only if for any objection to the outcome

there exists a counterobjection.13

We show that the set of feasible assignments which are both fair for same types and

constrained non-wasteful is non-empty in a controlled school choice problem. To show this we

propose a controlled version of the student proposing deferred acceptance algorithm (DAA).

Recall that in the classical algorithm of Gale and Shapley (1962) students are tentatively

admitted to schools, and at any step students who are not matched simultaneously propose

to schools to which they did not propose yet. Then each school considers the new proposals

and students who were tentatively admitted from the previous step, and tentatively admits

the most preferred students among these. The other students are rejected permanently. If

there is no rejection, then the algorithm ends and all the current tentative assignments are

made permanent.

Stage 1 of our algorithm is reminiscent of the DAA but it has three important differences.

First, proposals cannot be simultaneous. When several students propose simultaneously, it

may be infeasible to tentatively admit them at the same time. In our controlled student

proposing deferred acceptance algorithm, proposals are sequential (say according to when

the applications were received): similar to McVitie and Wilson (1970) at each step one

student, who is not tentatively assigned to a school, proposes to the most preferred school

13In a paper subsequent to Ehlers (2010), Alcalde and Romero-Medina (2011) weakened stability in
a similar fashion in school choice problems without constraints in order to improve efficiency of stable
assignments. Kesten (2010) also proposes a method for the latter.
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which has not rejected him yet.

Second, when tentatively accepting a student we need to make sure that the rest of the

students can be assigned feasibly. In other words, we check whether there is some feasible

assignment such that all tentative assignments can be made permanent. In the standard

DAA, we only check the feasibility of assignments at schools who receive proposals at that

step, without looking ahead.

Third, since we only require fairness for same types, in our algorithm, a student cannot

make a tentatively admitted student of another type be rejected by a school. In other words,

if there are no empty seats, students can only claim the tentative seats of the students of

their own types.

Stage 2 of our algorithm is an improvement stage where we look for Pareto improvements

within the class of assignments that are fair for same types. This is similar to Erdil and

Ergin (2008) in spirit, however, we have to make sure that the improvement is done so that

the legal constraints are respected–which is the main difficulty.

To be more explicit, roughly, Stage 1 works as follows: For an order of students, students

make proposals to schools one by one. Students can propose to a school only if there can

be a feasible assignment following from this proposal. All acceptances are tentative, but a

student can make a tentatively admitted student to be permanently rejected only when the

latter student is of the same type of the former student. Even though the initial stage finds

an assignment that is fair for same types and constrained non-wasteful, the assignment does

not have to be Pareto efficient among such assignments which is shown in Example 1 below.

Therefore, in Stage 2 we improve the matches of students in a systematic way to get an

assignment with the additional Pareto efficiency property. A more formal definition of this

algorithm is in order.

Controlled Student Proposing Deferred Acceptance Algorithm

with Improvement (CDAAI)

Stage 1: Initial Assignment

Start: Fix an order of the students, in which they are allowed to make proposals to schools,

say s1−s2−· · ·−sn. We will always define a tentative assignment ν (which also allows

students to be unassigned). The tentative assignment is such that it is possible to allo-

cate the unassigned students to schools such that the resulting assignment is feasible.

Let F denote the set of all feasible assignments and ν0 be the empty assignment, i.e.,

ν0(s) = s for all s ∈ S. Let PS be a controlled school choice problem.
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1. Let student s1 apply to the school which is ranked first under Ps1 , say c1. If there is

some µ ∈ F such that µ(s1) = c1,
14 then set ν1(s1) = c1 and ν1(s) = ν0(s) = s for all

s ∈ S\{s1}; otherwise s1 is rejected by school c1 and we set ν1 = ν0.

...

k. If there is some student s such that νk−1(s) = s (s is unassigned), then student s did

not yet apply to all the schools which are acceptable to him. Let s be the student with

minimal index among such students. Let c be the school which is the most preferred

under Ps among schools that have not rejected s yet.

(i) If there is µ ∈ F such that µ(s) = c and µ(s′) = νk−1(s
′) for all students s′ satisfy-

ing νk−1(s
′) 6= s′, then student s justifiably claims an empty slot at school c under

νk−1. Then we set νk(s) = c and νk(s
′) = νk−1(s

′) for all s′ ∈ S\{s} (Appendix

B provides an algorithm that checks in polynomial time whether student s can

tentatively be assigned to school c);

(ii) If (i) is not true, but there exists a type τ(s) student such that s justifiably envies

that student at school c under νk−1, then we do the following. Let s′ be the

student who has the lowest priority under �c among all students of type τ(s)

who are tentatively admitted at school c under νk−1. Then we set νk(s) = c,

νk(s
′) = s′, and νk(s

′′) = νk−1(s
′′) for all s′′ ∈ S\{s, s′}, i.e., school c permanently

rejects s′ and tentatively admits s; and

(iii) Otherwise (if (i) and (ii) are not true) we set νk = νk−1 and student s is rejected

by school c.

End: Stage 1 ends at a Step x where νx(s) 6= s for all s ∈ S. Let µ ≡ νx be the tentative

assignment.

Stage 2: Improvement

1. We construct a graph for assignment µ as follows. For each school c, we create k nodes

enumerated as c(t1), . . . , c(tk). Therefore, for each school c and type ti we have a node

denoted by c(ti). If there is an empty seat in school c, that is if |µ(c)| < qc, then we

create an additional node c(t0) representing the empty seats.

14We do not need to characterize F , but instead we need to check for any partial assignment, which
specifies the matches for a subset of students, whether there exists an assignment that has the same matches
defined in the partial assignment. The algorithm that we provide in Appendix B checks whether such
assignments exist in polynomial time.
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2. For each student type t and school c, we consider all type t students who would prefer

to be matched with c rather than their current assignments, i.e., {s ∈ St : cPsµ(s)}.
If this set is empty, then we do nothing. Otherwise, if this set is non-empty, then we

consider the student in this set with the highest priority according to �c. Let s be this

student. Then µ(s)(t) points to c(t). In addition, µ(s)(t) also points to c(t′) such that

s can be admitted to c by replacing a student of type t′ (that is, if |µt′(c)| > qt
′

c
and

|µt(c)| < qtc). If there is an empty seat in c (i.e., if |µ(c)| < qc), then µ(s)(t) also points

to c(t0) if s can take that seat without violating the feasibility constraints in c, (that

is, if |µt(c)| < qtc.)

3. For each school c with an empty seat, c(t0) points to all c′(t) where c′ 6= c and t 6= t0

such that a student of type t can be expelled from c′ without violating the feasibility

constraints in c′ (that is, if |µt(c′)| > qt
c′

.)

4. If there exists no cycle in the graph then stop. Otherwise, if there exists a cycle in this

graph, then we rematch students associated with each node in the cycle.15 Redefine µ

to be the new assignment and go back to Step 1 of Stage 2.

In Stage 1 of CDAAI students with smaller indices are allowed to propose first (and

students may be indexed according to when their applications were received by the controlled

school choice program). However, it is easy to verify that the order, in which students are

allowed to propose, is irrelevant for the conclusion of Theorem 2. Therefore, at each step

alternatively we may randomly choose a student from the students who are not tentatively

admitted to any school. This randomization of the CDAAI ensures that the algorithm

becomes anonymous. Then using Roth and Rothblum (1999) and Ehlers (2008) it can be

shown that in a low information environment it is a weakly dominant strategy for each

student to submit his true ranking. Unfortunately, in contrast to McVitie and Wilson’s

sequential version of DAA, CDAAI may yield different outcomes for different orders. For

instance, in the example used to prove part (i) of Theorem 1, CDAAI finds µ1 when student

s1 proposes first in Step 1 and it finds µ3 when student s2 proposes first in Step 1 instead.

The assignment found by CDAAI may be wasteful because in the example used to prove

part (i) of Theorem 1, the algorithm finds µ1 when s1 proposes in Step 1 and student s2

15For example, suppose that there exists a cycle c1(t1) → c2(t2) → . . . → ck(tk) → c1(t1). Then there
exists si ∈ µti(ci) for i ∈ {1, . . . , k} such that si �ci+1 s′ for all s′ ∈ {s ∈ Sti : ci+1Psµ(s)} where
ck+1 ≡ c1. The improvement algorithm then outputs assigment µ′ such that µ′(si) = ci+1 for i ∈ {1, . . . , k}
and µ′(s) = µ(s) for all s ∈ S \ {s1, . . . , sk}. Similarly, if the cycle involves node c(t0), i.e., if the cycle is
c(t0) → c2(t2) → . . . → ck(tk) → c(t0) then c2 loses a student and c gains a new student whereas other
schools have the same number of students at the end of the algorithm.
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justifiably claims an empty slot at school c3 under µ1. However, we show that it finds a

feasible assignment satisfying some other desirable properties.

Theorem 2 For any controlled school choice problem CDAAI yields a feasible assignment

that is fair for same types and constrained non-wasteful. Moreover, the assignment produced

by CDAAI is Pareto optimal among such assignments.

The proof of Theorem 2 is provided in Appendix A. In the proof, we initially show

that the first stage of CDAAI results in an assignment that is feasible, fair for same types,

and constrained non-wasteful. Then we show that the final assignment produced at the

end of the improvement stage is constrained efficient (i.e., it is Pareto optimal in the class of

assignments that are fair for same types). In fact, Lemma 5 in this proof can be used to show

that the assignment produced by CDAAI is weakly Pareto optimal, i.e., that there exists no

other feasible assignment which all students strictly prefer to the outcome of CDAAI.

The improvement stage of CDAAI corrects for the unnecessary efficiency loss caused by

the initial assignment. Indeed, the outcome of the initial stage can be Pareto dominated

by an assignment that is fair for same types and constrained non-wasteful. Therefore, in

the improvement stage, we rematch students to obtain an assignment that is Pareto effi-

cient among assignments that are fair for same types. To demonstrate this, we provide the

following example.

Example 1. An illustration of CDAAI. Consider the following example with six students

{s1, s2, s3, s4, s5, s6}, four schools {c1, c2, c3, c4} and three student types {t1, t2, t3} such that

τ(s1) = τ(s3) = t1, τ(s2) = τ(s5) = t2, and τ(s4) = τ(s6) = t3. Schools c1, c3, c4 have

capacities of two and c2 has a capacity of one. The only effective control constraints are

qt3
c1

= 1 and qt3c3 = qt2c3 = 0 (all other floors are zero and all other ceilings are equal to quotas).

For all schools, student priorities are the same and given as follows; for all c ∈ C,

s3 �c s5 �c s1 �c s2 �c s4 �c s6.
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For students s ∈ {s1, s4, s5, s6} the preferences are c1Psc2Psc3Psc4; whereas for students

s ∈ {s2, s3} the preferences are c2Psc1Psc3Psc4. This information is summarized in Table 1.

TABLE 1.

Ps1 = Ps4 = Ps5 = Ps6 Ps2 = Ps3 �c1=�c2=�c3=�c4
c1 c2 s3

c2 c1 s5

c3 c3 s1

c4 c4 s2

s4

s6

capacities qc1 = 2 qc2 = 1 qc3 = 2 qc4 = 2

effective ceilings qt2c3 = 0 qt3c3 = 0

effective floors qt3
c1

= 1

Suppose that students make proposals in the following order: s1− s2− s3− s4− s5− s6.
Let us apply CDAAI. To illustrate how Stage 1 of CDAAI works, we show some of the

earlier steps:

• s1 applies to c1 and gets admitted to c1;

• s2 applies to c2 and gets admitted to c2;

• s3 cannot get admitted to c2 since there is no empty seat in c2, and there is no student

admitted to c2 who has the same type as s3, s3 is rejected by c2;

• s3 cannot get the empty seat in c1 (because then it is not possible to fill the floor for

t3 in c1), but since s3 has higher priority than s1 at c1, s1 is rejected by c1 and s3 is

admitted to c1;

• s1 cannot get admitted to c2 since there is no empty seat in c2 and there is no student

admitted to c2 who has the same type as s1, s3 is rejected by c2;
...

Hence, at the end of Stage 1 of CDAAI algorithm, we obtain the assignment µ:

µ =

(
c1 c2 c3 c4

{s3, s4} s5 s1 {s2, s6}

)
.
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In Stage 2 of the CDAAI algorithm, instead of creating nodes for every possible type-

school pair, we can create nodes only for types that are already present in the school.

Therefore, we create seven nodes in the directed graph: c1(t1), c1(t3), c2(t2), c3(t1), c3(t1),

c3(t0), c4(t2), and c4(t3). We determine the edges as defined in CDAAI. The graph is depicted

in Figure 1.

c1(t3)

c1(t1)

c2(t2)

c3(t1)c3(t0)

c4(t2)

c4(t3)

Figure 1: The graph in the improvement stage of CDAAI.

The only cycle in this graph is c1(t1) → c2(t2) → c1(t1). Hence, we rematch students

associated with each node in the cycle, so s3 is matched to c2 and s5 is matched with c1.

Note that both s3 and s5 prefer their new schools to old schools. The new assignment µ′ is

given by:

µ′ =

(
c1 c2 c3 c4

{s4, s5} s3 s1 {s2, s6}

)
.

If we apply the improvement algorithm to this new assignment, we can confirm that there

are no cycles, hence µ′ is the resulting assignment of the CDAAI algorithm. Therefore, µ′ is

fair for same types, constrained non-wasteful, and Pareto efficient among such assignments.

3.1 Incentives

Apart from students’ preferences all components of a controlled school choice problem are

exogenously determined (like the capacities of the schools) or given by law (like the priority

rankings and the controlled choice constraints). The only information which is private are

students’ preferences over schools. They need to be stated by the students to the school

choice program. Since students must be assigned schools for any possible reported profile,
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the program has to be based on a mechanism selecting an assignment for each possible

problem. In a controlled school choice program the mechanism should respect the legal

constraints imposed by the state. A mechanism is (legally) feasible if it selects a feasible

assignment for any reported student profile.

Any program would like to elicit the true preferences from students. If students misreport,

then the assignment chosen by the program is based on false preferences and may be highly

unfair for the true preferences.

Avoiding this problem means constructing a mechanism where no student has ever an

incentive to misrepresent her true preference for any preferences reported by the other agents.

Any mechanism which makes truthful revelation of preferences a dominant strategy for each

student is called (dominant strategy) incentive compatible. A feasible mechanism is

fair across types if it selects for any controlled school choice problem a feasible assignment

that is fair for same types whenever such an assignment exists. Analogously we define fair

for same types, non-wastefulness and constrained non-wastefulness, respectively,

for a mechanism.

In contrast to the school choice problems studied in the previous literature, it is im-

possible to construct a mechanism that is incentive compatible, fair for same types and

constrained non-wasteful while respecting the diversity constraints given by law. Therefore,

it is impossible to choose for each profile an order in which students propose in CDAAI such

that the mechanism is incentive compatible. A similar result holds for fairness across types.

Theorem 3 (i) In controlled school choice there is no feasible mechanism that is dominant

strategy incentive compatible, fair for same types and constrained non-wasteful.

(ii) In controlled school choice there is no feasible mechanism that is dominant strategy

incentive compatible and fair across types.

The proof of Theorem 3 is provided in Appendix A, where we give examples to prove the

non-existence results.

Remark 1 The non-existence of feasible mechanisms, which are incentive compatible, fair

for same types and (constrained) non-wasteful, shows that controlled school choice is not

equivalent to the college admissions problem. In all models of school choice studied so far it

was possible to connect the school choice problem to the college admissions problem and show

that DAA is a mechanism which is non-wasteful, fair, and incentive compatible. This was

due to the absence of diversity constraints (the floors) which are present in controlled choice.

In college admissions, any mechanism which is incentive compatible for students chooses

the extreme of the lattice of stable assignments which students prefer over any other stable
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assignment. In controlled school choice there is not always a unique candidate for a feasi-

ble assignment that is fair for same types and (constrained) non-wasteful.16 This provides

additional reason for Theorem 3, i.e., for the non-existence of feasible mechanisms that are

incentive compatible, fair for same types and (constrained) non-wasteful.

Remark 2 Theorem 3 implies that for any order of the students CDAAI is not incentive

compatible. Due to this fact students may misrepresent their preferences over schools. Now

if the students play a Nash equilibrium (NE), what are the properties of the outcome (or the

assignment) of any NE? It is easy to see that the outcome of any NE must be constrained

non-wasteful.17 Unfortunately, the outcome of a NE may not be fair for same types according

to students’ true preferences.18,19

Any controlled school choice program must give up constrained non-wastefulness or fair-

ness for same types to achieve incentive compatibility. Does an existence result reemerge if

we give up exactly one of our two basic requirements, namely constrained non-wastefulness

or fairness for same types?

Since in real life often the number of available seats is approximately the same as the

number of students, potential justified claims of empty seats occur less frequently than

potential justified envy. Hence, a school choice program may be ready to give up constrained

non-wastefulness while retaining fairness for same types and incentive compatibility. We will

demonstrate that this weakening results in existence.20

Example 2. A feasible mechanism that is both fair for same types and incentive compatible.

Fix a feasible assignment, say µ. We relate any controlled school choice problem with a college

admissions problem in the following way: break any school c into k schools {c(t1), . . . , c(tk)}
where |T | = k and c(t) is the part of school c filling slots with students of type t. The

capacity of school c(t) is qc(t) = |µt(c)| and the preference of c(t) ranks only students of

16In the example used to prove (i) of Theorem 1, µ1 and µ3 are the only feasible assignments which are
fair for same types and constrained non-wasteful. Student s1 strictly prefers µ3 to µ1 whereas student s2
sstrictly prefers µ1 to µ3.

17Otherwise a student would justifiably claim an empty slot and after assigning him this empty slot the
resulting assignment is fair for same types. Then this student profits from changing his preference such that
he proposes to this school before proposing to the school to which he is assigned to.

18Ehlers (2010) provides an explicit example.
19In school choice problems without control and legal constraints, Ergin and Sönmez (2006) consider

revelation games induced by the Boston school choice mechanism and DAA.
20Giving up fairness for same types also results in existence. A serial dictatorship (which is used frequently

for the allocation of indivisible objects) is a feasible mechanism which is both non-wasteful and incentive
compatible. A serial dictatorship orders the set of students alphabetically, say s1, s2, . . ., and sn. Then
for any problem, first student s1 picks the feasible assignments which he most prefers, second student s2
picks the assignments, which he most prefers, among the remaining feasible assignments and so on. This
mechanism is fair only if each school’s priority ranking is identical with the alphabetical order of the students.
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type t acceptable, in the same order as �c. Note that some slots are wasted at school c

if |µ(c)| < qc. Any student replaces on his preference school c by |T | copies of c in the

order c(t1), c(t2),. . .,c(tk). Then determine the student optimal assignment of this related

problem. Because (i) all students rank all schools as acceptable, (ii) for any type t there

are exactly
∑

c∈C qc(t) =
∑

c∈C |µt(c)| = |St| slots available and (iii) any school c(t) ranks

acceptable exactly all students of type t, the student optimal assignment µ̄ of the related

problem satisfies for all types t and all schools c, µ̄t(c(t)) ⊆ St and |µ̄(c(t))| = qc(t) = |µt(c)|.
Thus the feasibility of µ implies that the student optimal assignment of the related

problem is a feasible assignment of the controlled school choice problem. We know that

DAA is incentive compatible. Furthermore, the stability of the student optimal assignment

in the related problem implies that there is no student envying justifiably another student

of the same type. Thus the “related” mechanism is a feasible mechanism which is both fair

for same types and incentive compatible. The mechanism is constrained non-wasteful only if

the initial assignment µ filled all available slots at each school. Furthermore the mechanism

is fair (across types) only if all students are of the same type.

Observe that the above mechanism is “rigid”: in Example 2 for each type t, the slots,

which will be filled with type-t students, are exogenously given by the feasible assignment

µ. This inflexibility was the price for incentive compatibility of this mechanism. In general

this price includes giving up Pareto optimality because due to the inflexibility all students

may be strictly better off with another feasible assignment compared to the assignment

chosen by the mechanism in Example 2. Note that this inefficiency stems from the rigidity

of the mechanism and not necessarily from the waste of empty seats. In the next section, we

overcome this inefficiency by providing a different interpretation of the ceilings and floors.

4 Controlled School Choice with Soft Bounds

Some school districts administer floors and ceilings as hard bounds, so a theoretical analysis

of such policies is inarguably important. In the previous sections, we accommodate this

constraint by considering an assignment infeasible if it assigns less than qt
c

or more than

qtc number of type t students to school c. However, applications of these hard bounds are

quite paternalistic in the sense that assignments can be forced despite student preferences. In

contrast, in this section we view these bounds as soft bounds. In controlled school choice with

soft bounds, school districts adapt a dynamic priority structure: giving highest priorities to

the student types who have not filled their floors; medium priorities to the student types

who have filled their floors, but not filled their ceilings; and lowest priorities to student types
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who have filled their ceilings. Yet, schools can still admit fewer students than their floors or

more than their ceilings as long as students with higher priorities do not veto this match.

With this view, there are no feasibility constraints as long as school quotas are not exceeded

(and our approach below can be used for situations where no feasible assignment exists). All

controlled choice concerns are embedded in the schools’ choice functions. A formal discussion

is in order.

In controlled school choice with soft bounds, any assignment that matches at most qc

number of students to school c is feasible under soft bounds. An assignment µ is non-

wasteful under soft bounds if for any student s and any school c, cPsµ(s) implies |µ(c)| =
qc. Previously, non-wastefulness required student s to be matched with c without violating

ceilings and floors, which is not required anymore. Furthermore, an assignment µ removes

justifiable envy under soft bounds if for any student s and any school c such that

cPsµ(s) with τ(s) = t, we have both |µt(c)| ≥ qt
c

and s′ �c s for all s′ ∈ µt(c), and either

(i) |µt(c)| ≥ qtc and s′ �c s for all s′ ∈ µ(c) such that |µτ(s′)(c)| > qτ(s
′)

c , or

(ii) qtc > |µt(c)| ≥ qt
c
, and

(a) |µt′(c)| ≤ qt
′
c for all t′ ∈ T \ {t}, and

(b) s′ �c s for all s′ ∈ µ(c) such that qτ(s
′)

c ≥ |µτ(s′)(c)| > qτ(s
′)

c
.

Less formally, an assignment removes justifiable envy under soft bounds if a student s

of type t cannot attend a favorable school c, then type t students fill their floor in c and c

prefers all type t students that it has been assigned to s. Moreover, either c has admitted

more than its ceiling of type t students, and all students with types exceeding their ceilings

are preferred to s; or c has admitted more than its floor, but not more than its ceiling of

type t students, there are no students with types exceeding their ceilings, and all students

with types exceeding their floors are preferred to s.

Finally, an assignment µ is fair under soft bounds if it removes justifiable envy under

soft bounds.

With hard bounds, no assignment that is fair and non-wasteful exists even if fairness

is restricted to students with the same types (Theorem 1). However, with soft bounds we

guarantee the existence of an assignment that is non-wasteful and fair under soft bounds. To

show this, we consider the student-proposing deferred acceptance algorithm with soft bounds,

defined below. We will first give the general version where schools use choice functions at each

step to reject and tentatively admit students and formalize the choice functions afterwards.

22



Deferred Acceptance Algorithm with Soft Bounds (DAASB)

Step 1 Start with the assignment in which no student is matched. Each student s applies

to her first-choice school. Let Sc,1 denote the set of students who applied to school c.

School c accepts the students in Chc(Sc,1) and rejects the rest.

Step k Start with the tentative assignment obtained at the end of step k− 1. Each student

s who got rejected at step k − 1 applies to her next-choice school. Let Sc,k denote the

set of students who either were tentatively matched to c at the end of step k − 1, or

applied to school c in this step. Each school accepts the students in Chc(Sc,k) and

rejects the rest. If there are no rejections, then stop.

Here, the choice function for school c depends on quota qc, floors qT
c

, and ceilings qTc as

described above. However, we are going to take these parameters as given and simplify the

notation by omitting them. To define the choice function more formally, given S̃ ⊆ S, let

Chc(S̃, qc, (q
t
c)t∈T ) be the subset of students S̃ ′ ⊆ S̃ that includes the highest ranked students

in S̃ according to �c such that there are no more than qc students in total and qtc students

of type t. In addition, let

Ch(1)c (S̃) ≡ Chc(S̃, qc, (q
t

c
)t∈T ),

Ch(2)c (S̃) ≡ Chc(S̃ \ Ch(1)c (S̃), qc − |Ch(1)c (S̃)|, (qtc − qtc)t∈T ), and

Ch(3)c (S̃) ≡ Chc(S̃ \ (Ch(1)c (S̃) ∪ Ch(2)c (S̃)), qc − |Ch(1)c (S̃) ∪ Ch(2)c (S̃)|, (qc − qtc)t∈T ).

Intuitively, Ch
(1)
c (S̃) is the set of students chosen with the highest priorities among S̃

without exceeding the floor of each student type, Ch
(2)
c (S̃) is the set of remaining students

chosen from S̃ with the highest priorities without exceeding the ceilings, and Ch
(3)
c (S̃) is the

set of students chosen above the ceilings. Finally, Chc(S̃) ≡ Ch
(1)
c (S̃) ∪Ch(2)c (S̃) ∪Ch(3)c (S̃)

is the set of students chosen from S̃. It is apparent from this formulation that schools

dynamically give highest priorities to the student types who have not filled their floors;

medium priorities to the student types who have filled their floors, but not filled their ceilings;

and lowest priorities to student types who have filled their ceilings.

DAASB terminates when there are no new applications. At each step of the algorithm,

there is at least one student rejected. Hence, the algorithm ends in finite time. Furthermore,

we establish that the well-known properties of the deferred acceptance algorithm continue

to hold.
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Theorem 4 For any controlled school choice problem, DAASB yields a feasible under soft

bounds assignment that is fair under soft bounds and non-wasteful under soft bounds. More-

over, in the assignment produced by DAASB each student is matched with the best outcome

among the set of all such assignments.

The proof of Theorem 4 is provided in Appendix A.

Even though CDAAI fails to satisfy incentive compatibility, DAASB satisfies a stronger

version of incentive compatibility: An assignment mechanism φ (choosing for any profile an

assignment) is group (dominant strategy) incentive compatible if for any group of

students Ŝ ⊆ S, for any profile PS there exists no P ′
Ŝ

such that φs(P
′
Ŝ
, PS\Ŝ)Psφs(PS) for all

s ∈ Ŝ. If a mechanism is group incentive compatible, then there exists no group of students

who can jointly change their preference profiles to make each student in the group better off.

Theorem 5 DAASB is group dominant strategy incentive compatible.

The proof of Theorem 5 is provided in Appendix A. It is an application of Hatfield and

Kojima (2009).

In addition, we establish a Pareto dominance relation between the outcome of DAASB

and non-wasteful assignments that also satisfy another fairness notion which is stronger than

fairness across types. This result gives us an interesting connection between hard bounds

and soft bounds for controlled school choice.

This fairness notion is defined as follows. A student s weakly-envies student s′ when s

prefers the school at which s′ is enrolled, say school c, to her school. However, the nature

of controlled school choice imposes the following (legal) constraints: Weak-envy is justified

only when

(i) student s has higher priority to be enrolled at school c than student s′,

(ii) student s can be enrolled at school c without violating controlled choice constraints by

removing s′ from c.21

An assignment is strongly-fair across types if no student justifiably weakly-envies any

student. Now, we proceed with the formal result.

Theorem 6 Suppose that µ is a feasible assignment that is strongly-fair across types and

non-wasteful. Then all students weakly prefer the outcome of DAASB to µ.

21Recall that envy is justified only with the additional requirement that s′ can be enrolled at another
school without violating constraints.
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The proof of Theorem 6 is provided in Appendix A. Therefore, if feasible assignments that

are strongly-fair across types and non-wasteful exist, then the outcome of DAASB (weakly)

Pareto dominates all such assignments. In such situations all students are weakly better off

under soft bounds than under hard bounds.22

Although we have required students to submit full rankings of all schools, it is easy to

check that all our results under soft bounds remain true if students are only required to

submit partial rankings of the schools which they strictly prefer to their outside options (like

private schooling). Hence, the desirable properties of DAASB continue to hold in this case.

5 Conclusion

Although there is a large literature in education evaluating and estimating the effects of

segregation across schools on students’ achievements (Hanushek, Kain, and Rivkin (2002),

Guryan (2004), Card and Rothstein (2005), and others),23 and on how to measure segregation

and how to determine optimal desegregation guidelines,24 none of these papers discusses

the problem of how in practice to assign students to schools while complying with these

desegregation guidelines. This is exactly what the first part of our paper does.

Without controlled choice, the student proposing deferred acceptance algorithm elimi-

nates any justified envy and makes truthful revelation of preferences a dominant strategy

for students (Abdulkadiroğlu and Sönmez, 2003). Once controlled choice constraints are

imposed as hard bounds it may be impossible to eliminate any justified envy. However,

justified envy can be eliminated only among students of the same type.

We demonstrate that controlled choice comes with a price, especially when the bounds

are taken as inflexible hard bounds. The alternative view of soft bounds has benefits over

hard bounds. It results in much attractive fairness, efficiency, and incentive properties. The

downside of it is that desired diversity in schools is achieved only when student preferences

are also in line with them. If the school districts’ objectives are not very paternalistic, and

only giving an opportunity to parents to achieve diversity is good enough, they should go

with soft bound policies. Otherwise the choice is hard bounds, along with the prices coming

with it.25

22The corresponding result for assignments that are fair across types and non-wasteful does not hold. An
example showing the contrary is available from the authors.

23We will refer the interested reader to Echenique, Fryer, and Kaufman (2006) for an illuminating account
of this literature.

24School segregation can be purely racial or, as in Echenique, Fryer and Kaufman (2006), school segrega-
tion is measured according to the spectral segregation index of Echenique and Fryer (2006) which uses the
intensity of social interactions among the members of a group (see also Cutler and Glaeser (1997)).

25One benefit of hard bounds is that, it is straightforward to check whether they are implemented or not.
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Appendix A: Proofs

In this Appendix, we provide the omitted proofs.

Proof of Theorem 1

The proof for both parts is by means of an example. For part (i) consider the following

problem consisting of three schools {c1, c2, c3} and two students {s1, s2}. Each school has a

capacity of two (qc = 2 for all schools c). All students are of the same type t. The ceiling

of type t is equal to two at all schools (qtc = 2 for all schools c). School c1 has a floor for

type t of qt
c1

= 1. All other floors are equal to zero. The schools’ priorities are given by

s2 �c1 s1, s2 �c2 s1 and s1 �c3 s2. The students’ preferences are given by c2Ps1c3Ps1c1Ps1s1

and c3Ps2c2Ps2c1Ps2s2. This information is summarized in Table 2.

TABLE 2.

�c1 �c2 �c3 Ps1 Ps2

s2 s2 s1 c2 c3

s1 s1 s2 c3 c2

c1 c1

s1 s2

capacities qc1 = 2 qc2 = 2 qc3 = 2

ceiling for t qtc1 = 2 qtc2 = 2 qtc3 = 2

floor for t qt
c1

= 1 qt
c2

= 0 qt
c3

= 0

Next we determine the set of assignments which are feasible for this problem. Feasibility

requires that student s1 or student s2 is assigned school c1 and all students are enrolled at

a school. Therefore,

µ1 =

(
c1 c2 c3

s1 s2 ∅

)
s2 claims c3

−→
µ2 =

(
c1 c2 c3

s1 ∅ s2

)
,

s2 envies s1 ↑ ↓ s1 envies s2

µ4 =

(
c1 c2 c3

s2 s1 ∅

)
←−

s1 claims c2
µ3 =

(
c1 c2 c3

s2 ∅ s1

)
If the districts use soft bounds, schools are not guaranteed to have diverse student bodies. Hence parents
can question whether these control policies are appropriately applied.
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and µ5 =

(
c1 c2 c3

{s1, s2} ∅ ∅

)
are the only assignments which are feasible. Now (as indi-

cated above)

(i) µ1 is wasteful because s2 justifiably claims an empty slot at c3,

(ii) µ2 is not fair for same types because s1 justifiably envies s2 at c3,

(iii) µ3 is wasteful because s1 justifiably claims an empty slot at c2,

(iv) µ4 is not fair for same types because s2 justifiably envies s1 at c2; and

(v) µ5 is wasteful because s1 justifiably claims an empty slot at c2.

Hence there is no feasible assignment which is both fair for same types and non-wasteful.

For part (ii) consider the following problem consisting of three schools {c1, c2, c3} and

three students {s1, s2, s3}. Each school has a capacity of one (qc = 1 for all schools c).

The type space consists of two types t1 and t2. Students s1 and s2 are of type t1 whereas

student s3 is of type t2. For all types the ceiling is equal to one at all schools (qtc = 1 for

all types t and all schools c). School c1 has a floor for type t1 of qt1
c1

= 1. All other floors

are equal to zero. The schools’ priorities are given by s2 �c1 s1 �c1 s3, s2 �c2 s1 �c2 s3 and

s1 �c3 s2 �c3 s3. The students’ preferences are given by c2Ps1c3Ps1c1Ps1s1, c3Ps2c2Ps2c1Ps2s2

and c2Ps3c3Ps3c1Ps3s3. This information is summarized in Table 3.

TABLE 3.

�c1 �c2 �c3 Ps1 Ps2 Ps3

s2 s2 s1 c2 c3 c2

s1 s1 s2 c3 c2 c3

s3 s3 s3 c1 c1 c1

s1 s2 s3

capacities qc1 = 1 qc2 = 1 qc3 = 1

ceiling for t1 qt1c1 = 1 qt1c2 = 1 qt1c3 = 1

floor for t1 qt1
c1

= 1 qt1
c2

= 0 qt1
c3

= 0

ceiling for t2 qt2c1 = 1 qt2c2 = 1 qt2c3 = 1

floor for t2 qt2
c1

= 0 qt2
c2

= 0 qt2
c3

= 0

Next we determine the set of assignments which are both feasible and fair across types for

this problem. Feasibility requires that student s1 or student s2 is assigned school c1 and all
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students are enrolled at a school. Therefore,

µ1 =

(
c1 c2 c3

s1 s2 s3

)
s2 envies s3

−→
µ2 =

(
c1 c2 c3

s1 s3 s2

)
,

s2 envies s1 ↑ ↓ s1 envies s2

µ4 =

(
c1 c2 c3

s2 s1 s3

)
←−

s1 envies s3
µ3 =

(
c1 c2 c3

s2 s3 s1

)
are the only assignments which are feasible. Now (as indicated above)

(i) µ1 is not fair across types because s2 justifiably envies s3 at c3,

(ii) µ2 is not fair across types because s1 justifiably envies s2 at c3,

(iii) µ3 is not fair across types because s1 justifiably envies s3 at c2, and

(iv) µ4 is not fair across types because s2 justifiably envies s1 at c2.

Hence there is no assignment which is both feasible and fair across types. �

Proof of Theorem 2

Let PS be a controlled school choice problem and µ be the assignment that the assignment

stage of CDAAI finds for PS. We first show that (a) µ is feasible, (b) µ is fair for same types,

and (c) µ is constrained non-wasteful.

For (a) it suffices to show at Step k, any student, who is unassigned under νk−1, did

not yet propose to all schools on his preference. Suppose that νk−1(s) = s and student s

proposed to all schools before.

Let student s have been on tentatively admitted at a school, say school c, until Step h.

Then at Step h another student s′ proposed to c and school c rejected s. Given that s′ is

unassigned at Step h−1 and both s′ and s have the same type, then there were other schools

c′ which could have given s′ an empty slot keeping all the other matches of νh unchanged.

But s did not apply to any of those empty slots before and afterwards (because otherwise

he would have received that slot). Therefore, this is impossible.

If student s was never tentatively admitted at a school, then let h be the step where

student s applied to his most preferred school. Since s is rejected at Step h, s could not

justifiably claim an empty slot at his most preferred school. But then there were no µ′ ∈ F
such that µ′(s′) = νh−1(s

′) for all s′ ∈ S\{s} with νh−1(s
′) 6= s′. But then νh−1 is an

impossible tentative assignment at Step h− 1, which contradicts the definition of CDAAI.
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For (b), suppose that µ is not fair for same types. Then there is a student s who justifiably

envies student s′ at school c under µ and both students s and s′ are of the same type. Let s′

have lowest priority in µ(c) among the students who are of type τ(s). Since cPsµ(s), student

s applied to school c at some step, say Step k.

If νk(s) = c, then by µ(s) 6= c, student s was later rejected by school c because some

student of type τ(s) applied to school c and had higher priority than s under �c. Now it is

impossible that student s′ was tentatively admitted at school c later because s′ must have

had higher priority than s and we have s �c s′.
If νk(s) 6= c, then (i) was not possible at Step k, i.e., s could not justifiably claim an

empty slot at school c under νk−1. Since (ii) was neither possible, all students of type τ(s) in

νk−1(c) had higher priority than s. Now it is again impossible that student s′ was tentatively

admitted at school c later because s′ must have had higher priority than s and we have

s �c s′.
It may be that student s′ later justifiably claimed an empty slot at school c. This is also

impossible because at Step x given a tentative assignment νx, for each school c and each

type, the students of that type admitted at the school only increases, i.e., it is not possible

that s′ claims an empty slot later whereas s could not do that earlier.

For (c), suppose that µ is not constrained non-wasteful. Then a student s justifiably

claims an empty slot at school c under µ and µ′ (where µ′(s) = c and µ′(s′) = µ(s′) for

all s′ ∈ S\{s}) is fair for same types. Since s justifiably claims an empty slot at school c,

we have cPsµ(s) and s must have proposed to c, say at Step k, before proposing to µ(s).

The following is true in CDAAI: once a student is tentatively admitted to a school, then the

student can only be rejected by this school if another student of the same type is admitted.

Therefore, for all types t and all schools c′ we have

|νtk−1(c′)| ≤ |µt(c′)|. (1)

Now by the feasibility of µ and s’s justified claim of an empty slot at c under µ, at Step k

there was a feasible assignment µ̂ such that µ̂(s) = c and µ̂(ŝ) = νk−1(ŝ) for all ŝ such that

νk−1(ŝ) 6= ŝ. Hence, νk(s) = c and s was tentatively assigned to c at Step k. Since µ(s) 6= c,

at a later step, say Step k′, school c rejected student s and admitted a student s′. Then

student s′ must be of the same type as s and at Step k′ (i) was not true, i.e., student s′ could

not justifiably claim an empty slot at school c at Step k′. But then by the same property

(1) for Step k′ no student of type τ(s) can justifiably claim an empty slot at school c under

µ, a contradiction to s’s justified claim of an empty slot at c under µ.

Hence, we established that the assignment µ produced at the end of Stage 1 of CDAAI
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is feasible, fair for same types, and constrained non-wasteful.

We now prove that the assignment produced at the end of improvement stage is “con-

strained efficient” (in the sense that it is Pareto optimal in the class of assignments that are

fair for same types) in steps by showing the following lemmas.

Lemma 1 The assignment produced by the improvement stage is feasible.

Proof. For t, t′ ∈ T , each node c(t) only points to a node c′(t′) when a type t′ student

can be fired from school c′ and a type t student can be admitted to c′ without violating

the feasibility conditions in school c′. Thus, when we execute a cycle consisting of such

nodes we get a feasible assignment. On the other hand, suppose that we execute a cycle

containing c(t0). Let the cycle include the following path c′(t)→ c(t0)→ c′′(t′). Since c′(t) is

pointing c(t0), then a type t student can take an empty seat in c without violating feasibility

constraints. Similarly, since c(t0) is pointing c′′(t′) a type t′ student can be fired from school

c′′. Therefore, the assignment produced is feasible.

Lemma 2 If µ′ is the assignment produced by improvement stage, then µ′ is fair for same

types.

Proof. Suppose otherwise that µ′ is not fair for same types. Therefore, there exist students

s and s′ of the same type such that s′ justifiably envies s: τ(s) = τ(s′), c ≡ µ′(s)Ps′µ
′(s′),

and s′ �c s. There are two cases depending on whether µ(s) = µ′(s).

• µ(s) = µ′(s): For student s′, let Rs′ be the weak order associated with Ps′ . Since µ is

fair and s′ �c s, we have µ(s′)Rs′c. Since the improvement stage improves the match

of every student or keeps it the same, we get µ′(s′)Rs′µ(s′). Therefore, µ′(s′)Rs′c which

is a contradiction.

• µ(s) 6= µ′(s): In this case, s must have matched with c in the improvement stage. In

order to have a node for type τ(s) in µ(s) point to any node for school c, s must have

the highest priority among type τ(s) students who prefer c to their current assignments.

This implies that s �c s′, a contradiction.

In both cases, we get a contradiction. The conclusion follows.

Lemma 3 Suppose that µ is a feasible assignment that is fair for same types, which is also

Pareto efficient among such assignments. Then µ is constrained non-wasteful.
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Proof. Suppose, otherwise, that µ violates constrained non-wastefulness. Then there exists

a student s and school c with an empty seat such that the assignment in which school c

admits student s without changing the matches of any other student is fair for same types.

This gives a contradiction to Pareto efficiency.

Lemma 4 Suppose that µ is an assignment that is fair for same types and Pareto efficient

among such assignments. Then µ is also Pareto efficient among assignments that are fair

for same types and constrained non-wasteful.

Proof. This follows from the fact that the set of assignments that are fair for same types is a

superset of the set of assignments that are fair for same types and constrained non-wasteful.

The conclusion follows from Lemma 3 and the fact that if µ is Pareto efficient in a bigger

set, then it is also going to be Pareto efficient in a smaller set.

Lemma 5 Let µ be an assignment that is fair for same types, which is not Pareto efficient

among such assignments. Then there exists a cycle in the graph described in the improvement

stage, and hence the assignment produced by the improvement stage is different than µ.

Proof. Let µ′ be an assignment that is fair for same types, which Pareto dominates µ.

Consider the graph associated with µ described in the improvement stage. We are going to

show that there exists a cycle in this graph. To do this, we split the analysis whether there

exists a school c such that |µ(c)| 6= |µ′(c)|.
Case 1: (There exists c such that |µ(c)| 6= |µ′(c)|.) Since the number of assigned students

is the same in both µ and µ′, there exists c such that |µ′(c)| > |µ(c)|. Hence, there exists a

type ti such that there are more type ti students in µ′(c) compared to µ(c). Hence, in the

graph associated with µ there exists a school c(1) such that c(1)(ti) is pointing c(t0). If the

floor of type ti in c(1) is not binding in µ, then c(t0) is also pointing c(1)(ti). Therefore, there

exists a cycle and we are done. Suppose otherwise that the floor of type ti in c(1) is binding

at µ. Let s ∈ µti(c(1)) be the student with highest priority according to �c among µti(c(1)).

Either s is matched with c in µ′, or s is not matched with it, then s must have been matched

with a better school in µ′ since µ′ is fair. Both imply that there exists a student of type ti

who is in µ′(c(1)) but not in µ(c(1)) since µ′ is feasible and that the number of type ti students

in µti(c(1)) is only at the floor level, i.e., |µti(c(1))| = qti
c(1)

. Therefore, there exists a school

c(2) such that c(2)(ti) is pointing to c(1)(ti). By a similar argument, we see that either c(t0)

is pointing to c(2)(ti) or that there exists a school c(3) such that c(3)(ti) is pointing to c(2)(ti).

Since there is a finite number of schools, by mathematical induction, we see that there exists

a positive number j such that c(t0) is pointing to c(j)(ti) and for every l = 1, . . . , j c(l)(ti) is
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pointing to c(l−1)(ti). Hence, there exists a cycle of type ti nodes and a node for an empty

seat.

Case 2: (For all c, |µ(c)| = |µ′(c)|.) In this case, since µ 6= µ′ there exist a type ti student

s and school c such that s ∈ µ′(c) \µ(c). Therefore, in the graph for µ, c(ti) is being pointed

by c(1)(ti) for some c(1) ∈ C. If there exists a type ti student in µ′(c(1)) \ µ(c(1)) then there

exists another node c(2)(ti) pointing to c(1)(ti). Suppose otherwise that there exists no such

student. Moreover, the type ti student with the highest priority in µti(c(1)) must have been

matched with a new school in µ′ (either c or another one) that she prefers over c since µ′ is

fair for same types. Therefore, we get that |µti(c(1))| > qti
c(1)

; and that |µ′(c(1)) \ µ(c(1))| > 0

since |µ(c(1))| = |µ′(c(1))|. Consider a type tj such that there exists a student s′ of type tj

such that s′ ∈ µ′(c(1)) \ µ(c(1)). Hence, there exists a node c(2)(tj) pointing to c(1)(ti) since

the number of type ti students exceed their floor. We continue in this fashion constructing

a path in the associated graph for µ. Since there exists a finite number of nodes we see that

this path must be a cycle. This completes the argument.26

Now we establish the result using above lemmas. Let µ be the initial assignment produced

by CDAAI after Stage 1. Suppose that µ is not Pareto efficient among assignments which

are fair for same types. Then there exists a cycle in the graph associated with µ (Lemma

5); and one application of the improvement scheme (here the improvement scheme refers to

steps 1-4 of the improvement stage without repeatedly applying it) produces an assignment,

say µ1, that is fair for same types (Lemma 2). If µ1 is not Pareto efficient among assignments

that are fair for same types, then we can reapply the improvement scheme. Let µk be the

assignment produced after the k-th application of the improvement scheme, which must be

fair for same types (Lemma 2). We continue applying the scheme until we get a Pareto

efficient assignment among assignments that are fair for same types. This happens in a

finite time, since each application of the scheme is a Pareto improvement. Therefore, there

exists k such that µk is an assignment that is fair for same types and also Pareto efficient

among such assignments. Then, µk is also constrained non-wasteful (Lemma 3). In addition,

µk is also Pareto efficient among assignments that are fair for same types and constrained

non-wasteful (Lemma 4). �

26The proof of Case 1 of Lemma 5 can be used to show that the output of CDAAI, say µ, is weakly
Pareto optimal: if not, there exists a feasible assignment µ′ such that µ′(s)Psµ(s) for all s ∈ S. But now
µ′(c) ∩ µ(c) = ∅ and as in Case 1 it can be shown that there exists a cycle in the graph associated with µ
described in the improvement stage (and µ cannot be the final output of CDAAI).
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Proof of Theorem 3

The proof for both parts is by means of an example. For part (i) consider the following

problem consisting of three schools {c1, c2, c3} and two students {s1, s2}. Each school has a

capacity of two (qc = 2 for all schools c). The type space consists of a single type t, i.e., both

students are of the same type t. The ceiling for type t is equal to two for each school (qtc = 2

for all schools c). School c1 has a floor for type t of qt
c1

= 1 and both other schools have

a floor of 0 for type t. Schools c1 and c2 give higher priority to student s2 whereas school

c3 gives higher priority student s1. The students’ preferences are given by c2Ps1c1Ps1c3Ps1s1

and c3Ps2c1Ps2c2Ps2s2. This information is summarized in Table 4.

TABLE 4.

�c1 �c2 �c3 Ps1 Ps2

s2 s2 s1 c2 c3

s1 s1 s2 c1 c1

c3 c2

s1 s2

capacities qc1 = 2 qc2 = 2 qc3 = 2

ceiling for t qtc1 = 2 qtc2 = 2 qtc3 = 2

floor for t qt
c1

= 1 qt
c2

= 0 qt
c3

= 0

Next we determine the set of feasible assignments. Feasibility requires that one of the

students is assigned school c1 and each student is assigned a school. Then it is straightforward

to verify that

µ1 =

(
c1 c2 c3

s1 ∅ s2

)
, µ2 =

(
c1 c2 c3

s1 s2 ∅

)

µ3 =

(
c1 c2 c3

s2 ∅ s1

)
, µ4 =

(
c1 c2 c3

s2 s1 ∅

)
, µ5 =

(
c1 c2 c3

{s1, s2} ∅ ∅

)
is the set of all feasible assignments.

It is easy to check that µ1 and µ4 are the only feasible assignments which are both fair

for same types and constrained non-wasteful for this controlled school choice problem. Note

that under PS,

(i) µ2 and µ5 are not constrained non-wasteful since s2 justifiably claims an empty slot at

c3 under both µ2 and µ5 and the resulting assignment µ1 is fair for same types, and

(ii) µ3 is not constrained non-wasteful since s1 justifiably claims an empty slot at c2 under

µ3 and the resulting assignment µ4 is fair for same types.
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Any feasible mechanism which is both fair for same types and constrained non-wasteful

must select either the assignment µ1 or the assignment µ4. We will show that in each case

there is a student who profitably manipulates the mechanism.

Case 1: The mechanism selects µ1.

Under µ1 student s1 is assigned school c1. We will show that student s1 gains by misre-

porting his true preference. Suppose that student s1 states the (false) preference P ′s1 given

by c2P
′
s1
c3P

′
s1
c1P

′
s1
s1, and student s2 were to report his true preference Ps2 . Keeping all other

components of the above problem fixed, in the new problem the students’ preferences are

P ′S = (P ′s1 , Ps2).

In the new problem under µ1 student s1 justifiably envies student s2 at school c3 since

(f1) µ1(s1) = c1, c3P
′
s1
c1 and s1 �c3 s2, and (f2) τ(s1) = τ(s2). Note that under P ′S,

(i) µ1 and µ2 are not fair for same types, and

(ii) µ3 and µ5 are not constrained non-wasteful since s1 justifiably claims an empty slot at

c2 under both µ3 and µ5 and the resulting assignment µ4 is fair for same types.

Thus, the unique feasible assignment, which is both fair for same types and non-wasteful

for the new problem, is µ4. Hence, any feasible mechanism, which is both fair for same types

and constrained non-wasteful, must select the assignment µ4 for the new problem. Under

µ4 student s1 is assigned school c2 which is strictly preferred to c1 under the true preference

Ps1 . Thus student s1 does better by stating P ′s1 than by stating his true preference Ps1 , and

the mechanism is not incentive compatible.

Case 2: The mechanism selects µ4.

Under µ4 student s2 is assigned school c1. Similarly as in Case 1 we will show that

student s2 gains by misreporting his preference. Suppose that student s2 states the (false)

preference P ′s2 given by c3P
′
s2
c2P

′
s2
c1P

′
s2
s2, and student s1 were to report his true preference

Ps1 . Keeping all other components of the above problem fixed, in the new problem the

students’ preferences are P ′S = (Ps1 , P
′
s2

).

In the new problem under µ4 student s2 justifiably envies student s1 at school c2 since

(f1) µ4(s2) = c1, c2P
′
s2
c1 and s2 �c2 s1, and (f2) τ(s2) = τ(s1). Note that under P ′S,

(i) µ4 is not fair for same types,

(ii) µ2 and µ5 are not constrained non-wasteful since s2 justifiably claims an empty slot at

c3 under both µ2 and µ5 and the resulting assignment µ1 is fair for same types, and
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(iii) µ3 is not constrained non-wasteful since s1 justifiably claims an empty slot at c1 under

µ3 and the resulting assignment µ5 is fair for same types.

The unique feasible assignment, which is both fair for same types and constrained non-

wasteful for the new problem, is µ1. Hence, any feasible mechanism, which is both fair

for same types and constrained non-wasteful, must select the assignment µ1 for the new

problem. Under µ1 student s2 is assigned school c3 which is strictly preferred to c1 under

the true preference Ps2 . Thus student s2 does better by stating P ′s2 than by stating his true

preference Ps2 , and the mechanism is not incentive compatible.27

For part (ii) we use the example in the proof of Theorem 1 part (ii). Recall the problem

consisting of three schools {c1, c2, c3} and three students {s1, s2, s3}. Each school has a

capacity of one (qc = 1 for all schools c). The type space consists of two types t1 and t2.

Students s1 and s2 are of type t1 whereas student s3 is of type t2. For all types the ceiling

is equal to one at all schools (qtc = 1 for all types t and all schools c). School c1 has a

floor for type t1 of qt1
c1

= 1. All other floors are equal to zero. The schools’ priorities are

given by s2 �c1 s1 �c1 s3, s2 �c2 s1 �c2 s3 and s1 �c3 s2 �c3 s3. The students’ preferences

are given by c2Ps1c1Ps1c3Ps1s1, c3Ps2c1Ps2c2Ps2s2 and c2Ps3c3Ps3c1Ps3s3. This information is

summarized in Table 5.

TABLE 5.

�c1 �c2 �c3 Ps1 Ps2 Ps3

s2 s2 s1 c2 c3 c2

s1 s1 s2 c1 c1 c3

s3 s3 s3 c3 c2 c1

s1 s2 s3

capacities qc1 = 1 qc2 = 1 qc3 = 1

ceiling for t1 qt1c1 = 1 qt1c2 = 1 qt1c3 = 1

floor for t1 qt1
c1

= 1 qt1
c2

= 0 qt1
c3

= 0

ceiling for t2 qt2c1 = 1 qt2c2 = 1 qt2c3 = 1

floor for t2 qt2
c1

= 0 qt2
c2

= 0 qt2
c3

= 0

Next we determine the set of assignments which are both feasible and fair across types for

this problem. Feasibility requires that student s1 or student s2 is assigned school c1 and all

students are enrolled at a school. If student s1 is assigned school c1, then s2 needs to be

27Using the same example and the same proof, one can easily check that for any feasible mechanism which
is fair for same types and constrained non-wasteful, no feasible and incentive compatible mechanism Pareto
dominates this mechanism. The latter means that for any problem the mechanism chooses an assignment
which is weakly preferred by all students to the assignment chosen by the first mechanism.
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assigned school c3 since otherwise s3 is assigned school c3, s2 school c2, and s2 justifiably

envies s3 at c3. Similarly, if student s2 is assigned school c1, then s1 needs to be assigned

school c2 since otherwise s3 is assigned school c2, s1 school c3, and s1 justifiably envies s3 at

c2. Now it is straightforward to verify that

µ =

(
c1 c2 c3

s1 s3 s2

)
and µ̄ =

(
c1 c2 c3

s2 s1 s3

)

are the only assignments which are both feasible and fair across types for this problem.

Any mechanism which is both feasible and fair across types must select either the assign-

ment µ or the assignment µ̄. We will show that in each case there is a student who profitably

manipulates the mechanism.

Case 1: The mechanism selects µ.

Under µ student s1 is assigned school c1. We will show that student s1 gains by misre-

porting his true preference. Suppose that student s1 states the (false) preference P ′s1 given

by c2P
′
s1
c3P

′
s1
c1P

′
s1
s1, and all other students were to state their true preferences. Keeping all

other components of the above problem fixed, in the new problem the students’ preferences

are P ′S = (P ′s1 , Ps2 , Ps3).

In the new problem under µ student s1 justifiably envies student s2 at school c3 through

the feasible assignment

µ′ =

(
c1 c2 c3

s2 s3 s1

)
since µ(s1) = c1, c3P

′
s1
c1 and s1 �c3 s2. Now it is straightforward to verify that the unique

feasible and fair across types assignment of the new problem is µ̄. Thus any mechanism,

which is both feasible and fair across types, must select the assignment µ̄ for the new problem.

Under µ̄ student s1 is assigned school c2 which is strictly preferred to c1 under the true

preference Ps1 . Thus student s1 is better off by stating P ′s1 than by stating his true preference

Ps1 , and the mechanism is not incentive compatible.

Case 2: The mechanism selects µ̄.

Under µ̄ student s2 is assigned school c1. Similarly as in Case 1 we will show that student

s2 gains by misreporting his preference. Suppose that student s2 states the (false) preference

P ′s2 given by c3P
′
s2
c2P

′
s2
c1P

′
s2
s2, and all other students were to state their true preferences.

Keeping all other components of the above problem fixed, in the new problem the students’

preferences are P ′S = (Ps1 , P
′
s2
, Ps3).
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In the new problem under µ̄ student s2 justifiably envies student s1 at school c2 through

the feasible assignment

µ̄′ =

(
c1 c2 c3

s1 s2 s3

)
since µ̄(s2) = c1, c2P

′
s2
c1 and s2 �c2 s1. Now it is straightforward to verify that µ is

the unique feasible assignment which is fair across types for the new problem. Thus any

mechanism, which is both feasible and fair across types, must select the assignment µ for

the new problem. Under µ student s2 is assigned school c3 which is strictly preferred to c1

under the true preference Ps2 . Thus student s2 does better by stating P ′s2 than by stating

his true preference Ps2 , and the mechanism is not incentive compatible. �

Proof of Theorem 4

This follows from Theorem 6.8 in Roth and Sotomayor (1990), since choice functions are

substitutable. Chc satisfies substitutability if for any group of students S̃ that contains

students s and s′ (s 6= s′), s ∈ Chc(S̃) implies s ∈ Chc(S̃ \ {s′}). To show substitutability,

note that if s ∈ Ch(1)c (S̃), then s ∈ Ch(1)c (S̃ \ {s′}). Otherwise, if s ∈ Ch(i)c (S̃) for i = 2 or

i = 3, then either s′ /∈
i
∪
j=1
Ch

(j)
c (S̃) and Ch

(i)
c (S̃) = Ch

(i)
c (S̃ \ {s′}) or s′ ∈

i
∪
j=1
Ch

(j)
c (S̃) and

(
i
∪
j=1
Ch

(j)
c (S̃)) \ {s′} ⊆

i
∪
j=1
Ch

(j)
c (S̃ \ {s′}). Therefore, Chc is substitutable for every c, and

the claim holds. �

Proof of Theorem 5

The proof is an application of either Mart́ınez et al. (2004) or Hatfield and Kojima (2009).

Here, we provide the argument following the latter.

Hatfield and Kojima (2009) show, in a many-to-one matching model with contracts, that

if the choice functions of schools satisfy substitutability and the law of aggregate demand,

then the student proposing deferred acceptance algorithm is group incentive compatible.

School c’s preferences satisfy law of aggregate demand if for any S ′′ ⊆ S ′ ⊆ S, we have

|Chc(S ′′)| ≤ |Chc(S ′)|.
The law of aggregate demand is satisfied in our setup since if |Chc(S ′′)| = qc then

|Chc(S ′)| = qc. Moreover, if |Chc(S ′′)| < qc then either |Chc(S ′)| = |Chc(S ′′)| if S ′′ = S ′ or

|Chc(S ′)| < |Chc(S ′′)| if |S ′′| < |S ′|.
Our setup can be trivially embedded in the many-to-one matching model with contracts

of Hatfield and Kojima (2009), so the conclusion follows. �
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Proof of Theorem 6

Let µ be a feasible assignment that is strongly-fair across types and non-wasteful. Since µ

is a feasible assignment, for every school c and student type t we have qt
c
≤ |µt(c)| ≤ qtc.

Together with strong-fairness across types, this implies that µ is fair under soft bounds. If

µ is also non-wasteful under soft bounds, the conclusion follows from Theorem 4. Suppose

otherwise that µ violates non-wastefulness under soft bounds. This means that there exist a

school c and a student s such that cPsµ(s) and |µ(c)| < qc. Whenever there exists such a pair

we apply the following algorithm to improve students’ matches. Note that this algorithm is

equivalent to the school-proposing deferred acceptance algorithm if µ is the assignment in

which no agent is matched.28

Step 1 For school c defined above, find S1 ≡ {s ∈ S : cPsµ(s)}. Among the students

in S1 first match the highest ranked students according to �c until the ceilings are

filled. Then match the best students according to �c up to the capacity or until S1 is

exhausted. Define µ1 to be the new assignment.

Step k If there is no school with an empty seat that a student prefers to her match in µk−1,

then stop. Otherwise consider one such school, say ck. Let Sk ≡ {s ∈ S : ckPsµk−1(s)}.
Among the students in Sk first match the highest ranked students according to �ck
until the floors are filled. Then match the highest ranked students according to �ck
until the ceilings are filled. Finally, match the best students if there are more students

and seats available. Define µk to be the new assignment.

This algorithm ends in finite time since it improves the match of at least one student at

every step of the algorithm. Let µ̂ denote the assignment produced by this algorithm. It is

clear that µ̂ is non-wasteful under soft bounds. We further claim that µ̂ removes justifiable

envy under soft bounds.

Consider a student s and school c such that cPsµ̂(s). Let τ(s) = t. For any student

s′ ∈ µt(c), either s′ was already matched with c in strongly-fair across types assignment

µ which implies s′ �c s, or that s′ got matched with c in the above algorithm which also

implies s′ �c s. Now we split the rest of the analysis depending on whether type t students

fill their floors or ceilings.

Case 1 (|µ̂t(c)| ≥ qtc): Consider s′ ∈ µ̂(c) such that |µ̂τ(s′)(c)| > qτ(s
′)

c . Since µ is

feasible it must be that some type τ(s′) students got matched with c in the above algorithm.

Moreover, such students must have lower priority compared to other type τ(s′) students who

were matched with c in µ. In addition, type τ(s′) students who get matched with c in the

28This is similar to the vacancy-chain dynamics studied in Blum, Roth and Rothblum (1997).
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above algorithm has a descending priority with respect to the order they were matched. The

last type τ(s′) student who got matched with c must have a higher priority than s since type

τ(s′) has already filled their ceilings and student s is not admitted to c in this step even

though she wants to switch to c. This implies that every student of type τ(s′) is preferred

to s.

Case 2 (qtc > |µ̂t(c)| ≥ qt
c
): In this case, for any t′ ∈ T\{t} we cannot have |µ̂t′(c) > qt

′
c |:

At least one student of type t′ must have been matched with c during the above algorithm

since µ is feasible. Consider the last student of type t′ who got matched with c. At the stage

when this student got matched with c, since s is not matched with c, it must be that type

t students have filled their ceilings. Later on some type t students in c must have matched

with other schools, so that type t students do not fill their ceilings in school c at the end of

the algorithm. After the step when type t students do not fill their floors anymore, type t

students can be admitted without violating school c’s quota. Since s is not matched with

c, and that type t students do not fill their ceilings at the end of the algorithm, we get a

contradiction. Therefore, |µ̂t′(c)| ≤ qt
′
c .

To complete the argument for Case 2, consider type t′ such that qt
′
c ≥ |µ̂t

′
(c)| > qt

′

c
. Let

s′ be the student in µ̂t
′
(c) with the least priority among type t′ students. If µ(s′) = c and

|µt′(c)| > qt
′

c
then s′ �c s since µ is fair. If µ(s′) = c and |µt′(c)| = qt

′

c
then at least one type t′

student must be matched with c during the above algorithm. But this gives a contradiction

since that student prefers c to her match in µ and she has a higher priority than s′. Finally,

if µ(s′) 6= c, then s′ has been matched with c during the above algorithm. If at the stage

when s′ is admitted, type t students do not fill their ceilings then s′ �c s. Otherwise, if type

t students fill their ceiling at that stage, then some of these students must have matched with

other schools later in the algorithm. Since s is not matched with c, and that type t students

do not fill their ceilings at the end of the algorithm, we get a contradiction. Therefore, in

all of the possibilities we conclude s′ �c s.
Thus, µ̂ removes justifiable envy under soft bounds. Hence, µ̂ is both fair under soft

bounds and non-wasteful under soft bounds. Since under DAASB all students are matched

to the best outcome among such assignments, the conclusion follows. �

Appendix B: Feasibility Checking Algorithm

Below we provide an algorithm to check in (i) of any step in Stage 1 of CDAAI whether the

proposing student can be assigned an empty slot at the school she proposes to. Note that

for finding a feasible assignment only student types (not student names) matter.

We want to check whether there exists a feasible assignment such that the number of
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type t students in school c is xtc. Let |St| = yt. Given a type allocation vector y = (yt)t∈T , a

quota vector q = (qc)c∈C , and floor and ceiling matrices q = {qt
c
}t∈T,c∈C , and q = {qtc}t∈T,c∈C ,

a type assignment matrix {xtc}t∈T,c∈C is feasible if,

(i) for all t ∈ T, we have
∑

c∈C x
t
c = yt,

(ii) for all c ∈ C, we have
∑

t∈T x
t
c ≤ qc, and

(iii) for all t ∈ T and c ∈ C, we have, qt
c
≤ xtc ≤ qtc.

First, the floors can be reduced to zero by defining a new variable x̂tc ≡ xtc − qt
c
. The

rest of the constraints then can be written in terms of x̂tc. The reduced set of constraints

corresponds to the so-called transportation problem, which is well-known in the operations

research literature. It is a network flow on a bipartite graph, and the linear programming

relaxation (allowing x to be non-integer) provides a feasible integer solution in polynomial

time (note that yt, qc, q
t
c
, and qtc are integers). Note that we can also use the transporta-

tion problem to check whether in any controlled school choice problem the set of feasible

assignments is non-empty or not.29

Hence, we can do the feasibility check in the first stage of CDAAI in polynomial time

for any preassignment ν that specifies the assignment of a subset of students S̃ as follows

(s ∈ S̃ ⇐⇒ ν(s) 6= s). We consider the rest of the students S \ S̃ and update the

feasibility constraints as follows: y′(t) ≡ y(t) − |S̃t|, q′c ≡ qc − |{s ∈ S̃ : ν(s) = c}|, and

q′tc ≡ qtc − |{s ∈ S̃t : ν(s) = c}|. In the reduced market, all students in S̃ are assumed to be

matched with schools according to v, and the constraints are updated accordingly.
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