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ABSTRACT

In this paper, we use identification-robust methods to assess the empirical adequacy of a New Key-
nesian Phillips Curve (NKPC) equation. We focus on the Gali and Gertler’s (1999) specification,
on both U.S. and Canadian data. Two variants of the model are studied: one based on a rational-
expectations assumption, and a modification to the latter which consists in using survey data on
inflation expectations. The results based on these two specifications exhibit sharp differences con-
cerning: (i) identification difficulties, (ii) backward-looking behavior, and (ii) the frequency of price
adjustments. Overall, we find that there is some support for the hybrid NKPC for the U.S., whereas
the model is not suited to Canada. Our findings underscore the need for employing identification-
robust inference methods in the estimation of expectations-based dynamic macroeconomic rela-
tions.

Key words: macroeconomics; inflation dynamics; New Keynesian Phillips Curve; identification
robust inference; weak instruments; optimal instruments.

JEL classification: C12, C13, C3, C52, E3, E31, E5.
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RÉSUMÉ

Dans cet article, nous employons des méthodes robustes aux problèmes d’identification afin
d’évaluer la valeur empirique d’une nouvelle équation de courbe de Phillips keynésienne (NKPC).
Nous concentrons notre analyse sur la spécification de Gali et Gertler (1999), en considérant des
données américaines et canadiennes. Nous étudions deux variantes du modèle: une première fondée
sur une hypothèse d’attentes rationnelles et une seconde où les attentes sont mesurées à partir de
données d’enquête. Les résultats basés sur ces deux spécifications diffèrent de manière notable sur
plusieurs points: (i) les problèmes liés à l’identification, (ii) les comportements rétrospectifs, (iii)
la fréquence des ajustements. En fin de compte, nos résultats sont compatibles dans une faible
mesure avec un modèle NKPC hybride, tandis que le modèle ne semble pas compatible avec les
données canadiennes. Nos résultats soulignent l’importance d’utiliser des méthodes robustes à
l’identification dans l’analyse empirique de relations macroéconomiques où interviennent des at-
tentes.

Mots-clefs: macroéconomie; dynamique de l’inflation; nouvelle courbe de Phillips keynésienne;
inférence robuste à l’identification; instruments faibles; instruments optimaux.

Classification du Journal of Economic Literature: C12, C13, C3, C52, E3, E31, E5.
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1. Introduction

A standard feature of macroeconomic policy models is an equation describing the evolution of
inflation. Nowadays, this process is typically modelled as a hybrid New Keynesian Phillips curve
(NKPC). This specification results from recent efforts to model the short-run dynamics of inflation
starting from optimization principles; see, for example, Woodford (2003) and the references therein.
In its basic form, the NKPC stipulates that inflation at time t is a function of expected future inflation
and the current output gap. With its clearly-elucidated theoretical foundations, the NKPC possesses
a straightforward structural interpretation and therefore presents, in principle, a strong theoretical
advantage over traditional reduced-from Phillips curves (which are only statistically justified).

However, given the statistical failure of the basic NKPC formulation when confronted with
data, the curve has since evolved into its more empirically-viable hybrid form. In particular, it was
noted that: (i) adding lagged inflation to the model (hybrid NKPC) corrects the signs of estimated
coefficients [see Fuhrer and Moore (1995), Fuhrer (1997) and Roberts (1997)], and (ii) using a
measure of real marginal cost derived from a given production function instead of the output gap
yields a better statistical fit according to GMM-based estimates and tests [see, for example, Gali and
Gertler (1999) and Gali, Gertler and Lopez-Salido (2001)]. Yet the question of which production
function (i.e., which marginal cost measure) is empirically preferable is not yet resolved, as the
choice for the marginal cost proxy seems to affect evidence on the weight of the backward-looking
term; see Gagnon and Khan (2005). In addition, there are different theoretical ways of incorporating
backward-looking behavior in the curve, and they yield different outcomes; see Fuhrer and Moore
(1995), Gali and Gertler (1999) and Eichenbaum and Fisher (2004).1

Discriminating between competing alternatives calls for reliable econometric methods. Full-
information models are typically nonlinear and heavily parametrized.2 So, in practice, these models
are often estimated by applying standard limited-information (LI) instrumental-variable (IV) meth-
ods to first-order conditions of interest. Indeed, the popularity of NKPC models stems in large part
from studies such as Gali and Gertler (1999) and Gali et al. (2001) who found empirical support for
their version of the curve using the generalized method of moments (GMM), and the fact that the
model is not rejected by Hansen’s J test.

But even as the popularity and usage of the curve has grown, criticisms have been raised with
respect to its empirical identifiability. The main issue is that IV methods such as GMM are not
immune to the presence of weak instruments; see, for example, Dufour (1997, 2003), Staiger and
Stock (1997), Wang and Zivot (1998), Zivot, Startz and Nelson (1998), Stock and Wright (2000),
Dufour and Jasiak (2001), Stock, Wright and Yogo (2002), Kleibergen (2002), Khalaf and Kichian
(2002, 2004), Dufour and Khalaf (2003), and Dufour and Taamouti (2005a, 2005b, 2003b, 2003a).
These studies demonstrate that standard asymptotic procedures (which impose identification away
without correcting for local almost-nonidentification) are fundamentally flawed and lead to spurious
overrejections, even with fairly large samples. In particular, the following fundamental problems
do occur: in models which may not be identified over all the parameter space, (i) usual t-type tests

1For example, Gali and Gertler (1999) appeal to the assumption that a proportion of firms never re-optimize, but that
they set their prices using a rule-of-thumb method; Eichenbaum and Fisher (2004) use dynamic indexing instead.

2In this literature, some of the parameters are typically calibrated while others are estimated.

1



have significance levels that may deviate arbitrarily from their nominal levels since it is not possible
to bound the null distributions of the test statistic, and (ii) Wald-type confidence intervals [of the
form: estimate ± (asymptotic standard error) × (asymptotic critical point)] have dramatically poor
coverage irrespective of their nominal level because they are bounded by construction; see Dufour
(1997).3

To circumvent the difficulties associated with weak instruments, the above cited recent work
on IV-based inference has focused on two main directions [see the surveys of Dufour (2003) and
Stock et al. (2002)]: (i) refinements in asymptotic analysis which hold whether instruments are
weak or not [e.g., Staiger and Stock (1997), Wang and Zivot (1998)), Stock and Wright (2000),
Kleibergen (2002), Moreira (2003b)], and (ii) finite-sample procedures based on proper pivots,
i.e. statistics whose null distributions do not depend on nuisance parameter or can be bounded
by nuisance-parameter-free distributions (boundedly pivotal functions) [Dufour (1997), Dufour and
Jasiak (2001), Dufour and Khalaf (2002), and Dufour and Taamouti (2005a, 2005b, 2003b, 2003a)].
The latter include methods based on Anderson and Rubin’s (1949, AR) pivotal F-statistic which
allow unbounded confidence sets.

Identification difficulties have led to re-examinations of NKPC models, and in particular of the
Gali and Gertler NKPC specification, by several authors. Especially relevant contributions on this is-
sue include Linde (2001), Ma (2002), Nason and Smith (2003) and Fuhrer and Olivei (2004). Linde
(2001) performs a small-scale simulation study based on a Gali-Gertler-type model and documents
the superiority of full-information maximum likelihood (FIML) over GMM. In particular, GMM
estimates appear sensitive to parameter calibrations. Ma (2002) applies the asymptotic methods
proposed by Stock and Wright (2000) to the Gali and Gertler’s NKPC in view of getting confidence
sets that account for the presence of weak instruments. These sets are much too large to be infor-
mative, suggesting that the parameters of the curve are indeed not well-identified. Nason and Smith
(2003) study the identification issue of the NKPC in limited-information contexts analytically, solv-
ing the Phillips curve difference equation. They show that typical GMM estimations of such curves
have parameters that are not identifiable (or nearly so), and full-information methods (FIML) can
make identification easier. Applications to U.S. data yield GMM estimates that are comparable to
the values obtained by Gali and Gertler (1999). In contrast, their FIML estimates (which the au-
thors feel are more reliable) point to a greater role for backward-looking behavior. For Canada,
the authors report that the NKPC is poorly identified, whether GMM or FIML estimation is used.
Finally, Fuhrer and Olivei (2004) consider improved GMM estimation, where the instrumentation
stage takes the constraints implied by the structure formally into consideration. They demonstrate
the superiority of their approach through a Monte Carlo simulation. In addition, they estimate an
inflation equation using U.S. data, and obtain a large forward looking component with conventional
GMM, but a much lower value for this parameter with “optimal” GMM and maximum likelihood.

In this paper, we reconsider the problem of estimating inflation dynamics, in view of recent
3Poor coverage (which implies that the data is uninformative about the parameter in question) is not really due to large

estimated standard errors, or even to poorly approximated cut-off points. The problems stem from the method of building
the confidence set as an interval which is automatically "bounded". Any valid method for the construction of confidence
sets should allow for possibly unbounded outcomes, when the admissible set of parameter values is unbounded (as occurs
when parameters are not identifiable on a subset of the parameter space). In this case, a bounded confidence set would
inevitably "rule out" plausible parameter sets, with obvious implications on coverage.
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econometric findings. Our aim is to produce more reliable inference based on identification-robust
tests and confidence sets. A characteristic feature of identification-robust procedures is they should
lead to uninformative (e.g., unbounded) confidence sets when the parameters considered are not
identified [see Dufour (1997)]. We focus on two types of procedures: the AR procedure and a
method proposed by Kleibergen (2002). The AR procedure is particularly appropriate from the
viewpoint of validating a structural model, because they are robust not only to weak instruments,
but also to missing instruments and more generally to the formulation of a model for endogenous
explanatory variables [see Dufour (2003) and Dufour and Taamouti (2005a, 2005b)]. A drawback,
however, of the AR procedure comes from the fact that it leads to the inclusion of a potentially
large number of additional regressors (identifying instruments), hence a reduction in degrees of
freedom which can affect test power in finite samples. To assess sensitivity to this type of effect, we
also apply a method proposed by Kleibergen (2002), which may yield power gains by reducing the
number of “effective” regressors (although at the expense of some robustness).4

Our applications study U.S. and Canadian data using: (i) the benchmark hybrid NKPC of Gali
and Gertler, which uses a rational expectations assumption, and (ii) a modification to the latter which
consists in using survey-based measures of expected inflation. Our analysis allows one to compare
and contrast both variants of the model; this is relevant because available studies imply that the
specification of the expectation variable matters empirically. For instance, Gali and Gertler (1999)
suggest that, when the model is conditional on labour costs, under rational expectations, additional
lags of inflation are no longer needed. In contrast, Roberts (2001) argues that those results are
sensitive to the specification of labour costs, and the need to include additional lags could reflect the
fact that expectations are not rational; see also Roberts (1997, 1997, 1998). Our results reveal sharp
differences between the two specifications for U.S. and Canada.

In section 2, we review the Gali and Gertler’s (1999) NKPC hybrid specification. In section
3, we describe the specific models and the methodology used in this paper. Section 4 discusses
our empirical results, and section 5 concludes. Details on the data and a formal treatment of the
statistical procedures we apply are presented in Appendices A and B.

2. Gali and Gertler’s hybrid NKPC model

In Gali and Gertler’s hybrid specification, firms evolve in a monopolistically competitive environ-
ment and cannot adjust their prices at all times. A Calvo-type assumption is used to represent the
fact that a proportion θ of the firms do not adjust their prices in period t. In addition, it is assumed
that some firms do not optimize but use a rule of thumb when setting their prices. The proportion
of such firms (referred to as the backward-looking price-setters) is given by ω. In such an environ-
ment, profit-maximization and rational expectations lead to the following hybrid NKPC equation
for inflation (πt):

πt = λst + γfEtπt+1 + γbπt−1, (2.1)

πt+1 = Etπt+1 + υt+1 (2.2)

4For further discussion of this issue, see Dufour and Taamouti (2003b, 2003a).
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where

λ =
(1− ω)(1− θ)(1− βθ)

θ + ω − ωθ + ωβθ
, (2.3)

γf =
βθ

θ + ω − ωθ + ωβθ
, γb =

ω

θ + ω − ωθ + ωβθ
, (2.4)

Etπt+1 is expected inflation at time t, st represents real marginal costs (expressed as a percentage
deviation with respect to its steady-state value) and υt is unexpected inflation. The parameter γf

determines the forward-looking component of inflation and γb its backward-looking part; β is the
subjective discount rate.

Gali and Gertler rewrite the above NKPC model in terms of orthogonality conditions. Two
different normalizations are used for this purpose.5 The first one [orthogonality specification (1)] is
given by

Et[
(
πt − λst − γfπt+1 − γbπt−1

)
zt] = 0 (2.5)

while the second one [orthogonality specification (2)] is

Et[(φπt − λst − γfπt+1 − γbπt−1)zt] = 0 (2.6)

where φ = (θ + ω − ωθ + ωβθ). The vector zt includes variables that are orthogonal to υt+1,
allowing for GMM estimation. Quarterly U.S. data are used, with πt measured by the percentage
change in the GDP deflator, and real marginal costs given by the logarithm of the labour income
share. The instruments include four lags of inflation, labour share, commodity-price inflation, wage
inflation, the long-short interest rate spread, and output gap (measured by a detrended log GDP).

Gali and Gertler’s estimations yield the following values for (ω, θ, β) : (0.27, 0.81, 0.89) for
specification (1), and (0.49, 0.83, 0.91) for specification (2). When the subjective discount rate is re-
stricted to one, the estimates are (0.24, 0.80, 1.00) and (0.52, 0.84, 1.00), respectively. The implied
slopes are all positive and deemed to be statistically significant using IV-based asymptotic standard
errors, and the fact that the overidentifying restrictions are not rejected by the J test. Accordingly,
Gali and Gertler conclude that there is good empirical support for the NKPC. Furthermore, the
forward-looking component of inflation is more important than the backward-looking part (i.e. the
estimated value of γf is larger than the one for γb).

However, given the severity of the size distortions induced by weak instruments, it is important
to ascertain that these results are not invalidated by such problems.6 Ma (2002) uses corrected GMM
inference methods developed by Stock and Wright (2000) to reevaluate the empirical relevance

5In Gali and Gertler (1999), the orthogonality conditions are written for the case ω = 0; see Gali et al. (2001) for the
general case.

6For a detailed discussion on weak instruments and their effects (as discussed in the introduction) see Nelson and
Startz (1990a), Nelson and Startz (1990b), Buse (1992), Choi and Phillips (1992), Maddala and Jeong (1992), Angrist
and Krueger (1994), McManus, Nankervis and Savin (1994), Bound, Jaeger and Baker (1995), Cragg and Donald (1996),
Hall, Rudebusch and Wilcox (1996), Dufour (1997), Staiger and Stock (1997), Wang and Zivot (1998), Zivot et al.
(1998), Stock and Wright (2000), Dufour and Jasiak (2001), Hahn and Hausman (2002, 2003), Kleibergen (2002),
Moreira (2003a, 2003b), Stock et al. (2002), Kleibergen and Zivot (2003), Wright (2003); several work is also cited in
Dufour (2003) and Stock et al. (2002).
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of the NKPC specifications. The corrected 90 per cent confidence sets (called S-sets) that Ma
calculates are very large, including all parameter values in the interval [0, 3] for two of the structural
parameters, and [0, 8] for the third one. Since all parameter combinations derived from these value
ranges are compatible with the model, this suggests that parameters are weakly identified. We will
now reassess the NKPC model using identification-robust (or weak-instrument robust) methods.

3. Statistical framework and methodology

We consider here two econometric specifications in order to assess Gali and Gertler’s NKPC. These
are given by:

πt = λst + γfπt+1 + γbπt−1 + ut+1 , t = 1, . . . , T , (3.1)

and
πt = λst + γf π̃t+1 + γbπt−1 + ut+1 , t = 1, . . . , T , (3.2)

where π̃t is a survey measure of inflation expectations. These two models differ by their assumptions
on the formation of inflation expectations. In (3.1), expected inflation Etπt+1 is proxied by the
realized value πt+1, while in (3.2) it is replaced by the survey-based measure π̃t+1 of expected
inflation for πt+1. It is easy to see that both approaches raise error-in-variable problems and the
possibility of correlation between explanatory variables and the disturbance term in the two above
equations. Studies such as Roberts have noted that the maintained specification for how expectations
are formed have important implications for the empirical validity of the curve. That is, additional
lags not implied by the NKPC under rational expectations may be required, even if the model is
conditional on labour costs.

The parameters λ, γf , and γb, defined in equations (2.3), are nonlinear transformations of the
“deep parameters” ω, β, and θ. The statistical details underlying our inference methodology are
presented in Appendix B, where to simplify presentation, we adopt the following notation: y is the
T -dimensional vector of observations on πt, Y is the T × 2 matrix of observations on st and either
of πt+1 and π̃t+1, X1 is the vector of observations on the inflation lag πt−1, X2 is the T ×k2 matrix
of the instruments (we use 24 instruments, see section 4) and u is the T -dimensional vector of error
terms ut.

The methodology we consider can be summarized as follows. To obtain a confidence set with
level 1 − α for the deep parameters, we invert the F-test presented in Appendix B associated with
the null hypothesis

H0 : ω = ω0, β = β0, θ = θ0 (3.3)

where ω0, β0, and θ0 are known values. Formally, this implies collecting the values ω0, β0, and θ0

that are not rejected by the test (i.e. the values for which the test is not significant at level α). Taking
equation (3.2) as an example, the test under consideration proceeds as follows (further discussion
and references are provided in Appendix B0.

1. Solve (2.3)-(2.4) for the values of λ, γf and γb associated with ω0, β0, and θ0 : we denote
these by λ0, γf0 and γb0.
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2. Consider the regression [which we will denote the AR-regression, in reference to Anderson
and Rubin (1949)] of

{
πt − λ0st − γf0π̃t − γb0πt−1

}
on {πt−1 and the instruments}. (3.4)

Under the null hypothesis [specifically (3.2)-(3.3)], the coefficients of the latter regression
should be zero. Hence testing for a zero null hypothesis on all response coefficients in (3.4)
provides a test of (3.3).

3. Compute the standard F-statistic for the exclusion of all regressors, namely,

{πt−1 and the instruments}

in the regression (3.4) [see (B.13) in Appendix B]. In this context, the usual classical re-
gression framework applies so the latter F-test can be referred to its usual F or χ2 cut-off
points.

Tests of this type were originally proposed by Anderson and Rubin (1949) for linear Gaussian
simultaneous equations models. The AR approach transforms a structural equation such as (3.2)
into the regular regression framework as in (3.4), for which standard finite-sample and asymptotic
distributional theory applies. The required transformation is extremely simple, despite the complex-
ity of the model under test. Indeed, the basic test we use for inference on ω0, β0, and θ0 differs from
a standard IV-based Wald or t-type one in the fact that it avoids directly estimating the structural
equation in (3.2), which faces identification difficulties. In contrast, the AR-regression (3.4) sat-
isfies the usual classical regression assumptions (because no "endogenous" variables appear on its
right-hand side). Whereas any statistical analysis of (3.2) requires identification constraints, these
are no longer needed for inference on the regression (3.4). As shown more rigorously in Appendix
B, the AR-regression provides information on the structural parameters because it is linked to the
reduced form associated with the structural equation (3.2). By identification-robust, we mean here
that the F-test is valid whether the model is identified or not.7

Transforming the test problem to the AR-regression framework however comes at some cost:
the identification-robust F-test requires assessing [in the regression (3.4)] the exclusion of πt−1

and the 24 available instruments (25 constraints), even though the number of structural parameters
under test is only 3. Instrument abundance thus leads to degrees-of-freedom losses with obvious
consequences on test power. It is possible to characterize what an “optimal” instrument set looks
like from the viewpoint of maximizing test power: up to a nonsingular transformation, the latter (say
Z̄) should be the mean of the endogenous explanatory variables in the model or, which is equivalent,

X2 × {the coefficient of X2 in the first stage regression, assumed known},

7We emphasize in Appendix B that the latter test will be size correct exactly if we can strictly condition on the
regressors and particularly the instruments for statistical analysis; weakly exogenous regressors in our dynamic model
with instruments orthogonal to the regression error terms are not in accord with the latter assumption. Nevertheless, the
tests are still identification-robust. An exact test can still be devised for the NKPC model at hand despite its dynamic
econometric specification if one is willing to consider strongly exogenous instruments.
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where X2 (as defined above) refers to the matrix of available instruments; see Dufour and Taamouti
(2003b) and Appendix B of this paper. Here, the first stage regression is the regression of the
left-hand side endogenous variables in (3.2) [marginal cost and expected inflation] on the included
exogenous variable [the inflation lag] and X2. More precisely, this involves applying steps 1-3 above
after replacing the instruments by Z̄, whose dimension is T × 2. So, the optimal identification-
robust F-test requires assessing [in the regression (3.4)] the exclusion of πt−1 and the two optimal
instruments (3 constraints); recall that the number of structural parameters under test is indeed 3.
This provides optimal information reduction, which improves the power of the test (and thereby
may tighten the confidence sets based on these tests).

In practice, however, the coefficient of X2 in the first-stage regression (Π2 in Appendix B)
is not known, and estimates of this parameter must be "plugged in", which of course only leads
to an “approximately optimal” procedure. As described in Dufour (2003), many procedures that
aim at being identification-robust as well as improving the AR procedure from the viewpoint of
power rely on different choices of Z̄. In particular, if a constrained OLS estimator imposing the
structure underlying (3.2) is used [Π̂0

2 in equation (B.15)], then the associated procedure yields
Kleibergen’s (2002) K-test.8 In other words, Kleibergen’s (2002) test obtains on applying steps 1-3
above, replacing the instruments by

Z̄K = X2Π̂
0
2 .

To avoid confusion, the tests based on X2 and Z̄K are denoted by AR and AR-K, respectively. This
is the alternative “parsimonious identification-robust” we shall consider here.

Finally, inverting these tests to get confidence sets is carried out as follows: using a grid search
over the economically meaningful set of values for ω, β, and θ, we sweep the economically relevant
choices for ω0, β0, and θ0.9 For each parameter combination considered, we compute the statistics
AR and AR-K as described above and their respective p-values. The parameter vectors for which
the p-values are greater than the level α constitute a confidence set with level 1 − α. Since every
choice of ω0, β0, and θ0 entails [using (2.3)] a choice for λ, γf and γb, this procedure also yields
conformable confidence sets for the latter parameters. These confidence sets reflect the structure,
and obtain without further computations, although λ, γf and γb are transformations of the deep
parameters. Therein lies a significant advantage in using our approach as an alternative to standard
nonlinear Wald-based techniques.

To conclude, it is worth to emphasize two points. First, if the confidence set obtained by invert-
ing an AR-type test is empty, i.e. no economically acceptable value of the model deep parameters is
upheld by the data, then we can infer that the model is rejected at the chosen significance level. We
thus see that the procedure used here may be seen as an identification-robust alternative to the stan-
dard GMM-based J test. In the same vein, utterly uninformative (too wide) confidence sets allow

8To correct for plug-in estimation effects (i.e. for estimating Π2), Dufour and Jasiak (2001), Dufour and Taamouti
(2003b, 2003a) recommend split sample estimation techniques, where the first sub-sample is used to estimate Π2 and the
second sub-sample is used to run the optimal AR-test based on the latter estimate. Results applying these versions of the
tests are available from the authors upon request.

9We allow the range (0, 1) as the admissible space for each of ω, θ, and β. The values are varied with increments of
0.03 for ω and θ, and by 0.01 for β. The increment of 0.03 was chosen for the first two parameters (rather than 0.01) to
minimize the computational burden.
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one to assess model fit, since unbounded confidence sets do occur under identification difficulties
[see the discussion in Dufour (2003)]. Our procedure (which achieves, for practical purposes, the
same specification checks conveyed by a J-type test) has a clear “built-in” advantage over GMM-
based t-type confidence intervals, backed by a non-significant J test.10

Our procedure offers another important advantage not shared by the latter standard approach. So
far, we have considered the estimation and test problem given a specific significance (or confidence)
level α. Alternatively, the p-value associated with the above defined tests, which provides a formal
specification check, can be used to assess the empirical fit of the model. In other words, the values
(uniqueness is not granted) of ω0, β0, and θ0 that lead to the largest p-value formally yield the set of
“least rejected” models, i.e. models that are most compatible with the data.11 In practice, analyzing
the economic information content of these least rejected models (associated with the least rejected
“deep parameter” combinations) provides decisive and very useful goodness-of-fit checks.

4. Empirical results

We applied the above-defined inference methods to the hybrid NKPC models in (3.1) and (3.2)
for both U.S. and Canadian data. One difference between our specifications and those of Gali and
Gertler is that we use a real-time output-gap measure in the set of instruments instead of a gap
detrended using the full sample. The latter measure does not appear an appropriate instrument
since, when the full sample is used, lagged values of the gap are, by construction, related to future
information. To avoid this, we proceed iteratively: to obtain the value of the gap at time t, we
detrend GDP with data ending in t. The sample is then extended by one more observation and the
trend is reestimated. This is used to detrend GDP and yields a value for the gap at time t + 1.
This process is repeated until the end of the sample. In this fashion, the gap measure at time t does
not use information beyond that period and can therefore be used as a valid instrument. We also
considered a quadratic trend for this purpose.12

Regarding survey expectations, the Federal Reserve Bank of Philadelphia publishes quarterly
mean forecasts of the next quarter’s U.S. GDP implicit price deflator. We first-difference this series
to obtain our inflation-expectations series for the U.S.13 In the case of Canada, the survey-based
inflation expectations series were obtained from Canada’s Conference Board Survey; further details
on the Canadian data appear in Appendix A. For the remaining variables, other than the output gap,
we use the Gali and Gertler data and instrument set for the U.S., and the corresponding variables
in the case of Canada. Because of the expectations variables in the data set, our samples start in
1970Q1.

10Indeed, if the AR confidence set with level 1− α is empty, then the usual LIML over-identification test statistic will
exceed a specific bounds-based identification-robust α-level critical point, i.e. the associated over-identification test is
conclusively significant at level α.

11This method underlies the principles of Hodges-Lehmann estimators; see Hodges and Lehmann (1963, 1983). Least-
rejected values may thus be interpreted as "point estimates".

12We repeated our estimations using a cubically-detrended real-time gap measure, as well the Christiano-Fitzgerald
one-sided band-pass filter, and obtained qualitatively similar results.

13Source:http://www.phil.frb.org/econ/spf/index.html.
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Table 1. Anderson-Rubin tests with rational expectations

Test Type Unrestricted model
Max p-value Deep parameters Reduced-form parameters Freq.

(ω, θ, β) (λ, γf , γb)

AR U.S. 0.2771 (0.40, 0.64, 0.96) (0.08, 0.60, 0.39) 2.78
Canada - - - -

AR-K U.S. 0.9993 (0.40, 0.61, 0.98) (0.09, 0.59, 0.40) 2.56
Canada 0.9990 (0.01, 0.37, 0.21) (1.53, 0.21, 0.03) 1.59

β = 0.99
Max p-value Deep Parameters Reduced-form Parameters Freq.

(ω, θ, β) (λ, γf , γb)

AR U.S. 0.2765 (0.37, 0.64, 0.99) (0.08, 0.63, 0.37) 2.78
Canada - - - -

AR-K U.S. 0.9987 (0.37, 0.64, 0.99) (0.08, 0.63, 0.37) 2.78
Canada 0.2900 (0.01, 0.10, 0.99) (7.30, 0.91, 0.09) 1.11

Note - AR is the Anderson-Rubin test and AR-K refers to the Kleibergen test. Freq. is the average frequency
of price adjustment, measured in quarters.

We first apply the AR test to the U.S. data, and for equation (3.1), to assess the Gali and Gertler
(1999) reported estimates. Specifically, we test whether ω, θ, and β are (0.27, 0.81, 0.89) or (0.49,
0.83, 0.91), which correspond to those authors’ estimates based on their orthogonality specifications
(1) and (2), respectively. We find all tests to be significant at conventional levels, so that their
estimated parameter values are rejected. We then ask whether, for the same instrument set, there
exists a value of the parameter vector for which the hybrid NKPC is not rejected. Interestingly, we
find some dramatically different results depending on whether (3.1) or (3.2) is used.

For the U.S. rational expectation solution, we find a bounded but fairly large confidence set.
This entails that there is a multitude of different parameter combinations which are compatible
with the econometric model tested, although the set is much smaller than the S-sets constructed
by Ma.14 However, for the model using survey expectations the confidence set is empty (at the
95% level). Thus, there is not a single parameter value combination which is compatible with this
particular econometric model, implying that with survey expectations, the model is not identified.
With regards to the Canadian data, we find that the outcomes are reversed. Thus, it is the model
with rational expectations that generates the empty confidence set, while the specification using
survey data yields the non-empty one. The latter is so small that there are only some parameter

14There is a slight difference between our two instrument sets: Ma’s set includes a constant and has no fourth lag for
any of the variables in levels.
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Table 2. Anderson-Rubin tests with survey expectations

Test type Unrestricted model
Max p-value Deep parameters Reduced-form parameters Freq.

(ω, θ, β) (λ, γf , γb)

AR U.S. - - - -
Canada 0.1009 (0.01, 0.97, 0.89) (0.00, 0.88, 0.01) 33.33

AR-K U.S. 0.9983 (0.01, 0.61, 0.64) (0.38, 0.63, 0.02) 2.56
Canada 0.0890 (0.01, 0.97, 0.90) (0.00, 0.89, 0.01) 33.33

β = 0.99
Max p-value Deep parameters Reduced-form parameters Freq.

(ω, θ, β) (λ, γf , γb)

AR U.S. - - - -
Canada 0.0562 (0.01, 0.97, 0.99) (0.00, 0.98, 0.01) 33.33

AR-K U.S. 0.6057 (0.52, 0.22, 0.99) (0.40, 0.29, 0.70) 1.28
Canada - - - -

Note - AR is the Anderson-Rubin test and AR-K refers to the Kleibergen test. Freq. is the average frequency
of price adjustment, measured in quarters.

value combinations for which the model is statistically valid.
Along with the identification-robust confidence sets, one of the great advantages of using the

Anderson-Rubin method is that it yields the parameter combination that is least rejected, or, alterna-
tively, that has the highest p-value. Formally, as explained in the previous section, this point estimate
corresponds to the so-called Hodges-Lehmann estimate and can be compared with point estimates
obtained using more conventional estimation methods (such as GMM). We report this estimate for
the U.S. and Canada in the upper panels of Tables 1 and 2, respectively. From here, we can see
that, under rational expectations, the values of the deep parameters (ω, θ, β) that correspond to the
maximal p-value for the U.S. is given by (0.40, 0.64, 0.96). These translate into a value of 0.6 for
the coefficient of the forward-looking component on inflation (γf ), and 0.39 for the coefficient of
the backward-looking component (γb). Furthermore, the coefficient on the marginal cost variable
is 0.08, and the average frequency of price adjustment is 2.78 quarters.

Based on the Hodges-Lehmann estimates, the findings provide support for the optimization-
based Phillips curve, and the notion that the forward-looking component of the U.S. inflation process
is more important than its backward-looking part. In addition, the estimate for the average frequency
of price adjustment is fairly close to the value of 1.8 obtained based on micro data [see, for example,
Bils and Klenow (2004)].15 On the other hand, the graphs in the lower panel of Figure 1 provide a

15Gali and Gertler report average price adjustment frequencies of about 3 to 4 quarters.
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Figure 1. AR and AR-K tests (U.S., Rational Expectations).

11



Figure 2. AR-K tests (U.S., Survey Expectations).

qualification to the above statement.
The graph on the left depicts the 95% (solid line, p-value = 0.05) and 90% (dashed line, p-

value = 0.10) confidence sets based on the AR test, and for the case where the subjective discount
parameter is constrained to lie between 0.95 and 0.99. An “X” marks the spot corresponding to
the highest p-value obtained (0.2797). Immediately, three features can be noticed: (i) the sets of
parameter values not rejected that the test does not reject at the 5 and 10% levels are fairly large,
(ii) within these sets, there is more than one ω value that corresponds to a given θ, and vice-versa,
and (iii) the parameter combination that yields the highest p-value is very close to points that have
a p-value of 0.10 only. In other words, even when β is constrained quite tightly, the uncertainty
regarding the estimated values of the other parameters is relatively high. This is seen more easily
in the adjacent graph which depicts the values corresponding to the 95% confidence set in the γf

and γb space. Notice, in particular, that a value of 0.60 for the backward-looking component of
inflation, and 0.37 for the forward-looking part is as likely to obtain as a value of 0.90 and 0.10 for
the forward and backward-looking components, respectively.

Turning now to Canadian data, recall that the model with rational expectations is not compatible
with the data, but that the one with survey expectations does yield a non-empty set. The results
corresponding to the highest p-value for the latter are found in Table 2. In this case, the maximal
p-value is 0.1009 while the deep parameters are (0.01, 0.97, 0.89). Based on the fact that the
proportion of firms that follow a rule-of-thumb is practically zero (ω = 0.01), we would conclude
that a purely forward-looking model is applicable to Canada. However, a look at the reduced-form
parameters and the average frequency of price adjustment indicate that the model is economically
not plausible. This is the case even if β is constrained to 0.99 in the estimation.16

Results based on Kleibergen’s statistic are also reported in Tables 1 and 2. As for the AR tests,
16For this reason, and because all of the admissible ω values in the AR-based confidence sets equal 0.01, no figures are

provided for Canada.
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two sets of outcomes are tabulated for each country: the parameter values that yield the highest
test p-value for the unrestricted model appear in the upper panel, while the lower one shows the
corresponding elements when β is constrained to 0.99.

Let us first examine the results for the U.S. with the rational expectations model. When Z̄K is
used as the instrument set, the model is least rejected for the parameter combination (0.40, 0.61,
0.98), and the p-value is 0.9993. These values are extremely close to those reported for the cor-
responding restricted estimation (with β constrained to 0.99) case, and also, to those of the AR
tests.

With the model based on survey expectations (Table 2), although the AR test yields an empty
confidence set for the U.S., AR-K test that corresponds to Kleibergen’s K-test (the AR-K test) yields
a least-rejected parameter combination that suggests strongly forward-looking behaviour (γf =
0.63, γb = 0.02). In addition, when the subjective discount rate is constrained to 0.99, the AR-K
test now points to a much more important backward-looking component for inflation.

Our findings are somewhat similar with Canadian data. Although the AR-K test yields outcomes
similar to those of the AR test for the unrestricted model with survey expectations, with rational
expectations, the AR-K yields parameter values that suggest a less important forward-looking role
in inflation. In addition, the estimate for the average frequency of price adjustment is 1.6, very much
in line with micro data [as in Bils and Klenow (2004)]. These results are nevertheless difficult to
reconcile with the value for λ, which is essentially zero. In addition, once the subjective discount
rate parameter is constrained to 0.99, the conclusions on the rational expectations specification from
the AR-K test point to a much more important forward-looking component of inflation (γf = 0.91,
γb = 0.09). The unusual feature in this case is the value of the coefficient on the marginal cost
variable, λ, which stands at 7.30.

Figures 1 and 2 present U.S. graphed results for the AR-K test for the case where β is constrained
to fall between 0.95 and 0.99. Under rational expectations (Figure 1), the confidence set based on
inverting the AR-K test is larger than that based on the AR but results are in line with each other,
in the sense that the 95% confidence sets are more skewed towards higher γf than γb. Turning
to Figure 2, we find that the AR-K test produces strong support for a larger backward-looking
component to inflation.

Taken collectively, the results in this section point to problems of weak identification in these
models. Nevertheless, we find that there is some support for the hybrid NKPC for the U.S., whereas
the model is not suited to Canada.

5. Conclusion

In this paper we used finite-sample methods to test the empirical relevance of Gali and Gertler’s
(1999) NKPC equations, using AR tests as well as Kleibergen’s more parsimonious procedure. We
focused on the Gali and Gertler’s (1999) specification, on both U.S. and Canadian data. Two variants
of the model were studied: one based on a rational-expectations assumption, and a modification to
the latter which consists in using survey data on inflation expectations. In the U.S. case, Gali
and Gertler’s (1999) original data set were used except for the output gap measure and survey
expectations where applicable.
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First, we found some evidence of identification difficulty. Nevertheless, the maximal p-value
arguments point out those parameter values for which the model is least rejected – a very useful
feature of our proposed identification-robust techniques. Second, we found support for Gali and
Gertler’s hybrid NKPC specification with rational expectations for the U.S. Third, neither model
was found to be well-suited to describe inflation dynamics for Canada. Fourth, we found that, for
the cases where the Anderson-Rubin test yields an empty confidence set, the AR-K procedure leads
to conflicting results for the restricted and unrestricted models.

These results underscore the need for employing identification-robust inference in the estimation
of expectations-based dynamic macroeconomic relations.
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Appendix

A. Data description for Canada

The inflation expectations series is obtained from the Conference Board of Canada survey. Each
quarter, participants are asked to forecast the annual average (GDP-deflator) inflation rate for the
current year. Let us denote π̃a

1, π̃a
2, π̃a

3, and π̃a
4, the annual average inflation forecasts made in

quarters 1, 2, 3, and 4 of a given year, respectively. Clearly, forecasts that are made in the second,
third, and fourth quarters are likely to integrate realized (and observed) inflation in quarters 1, 1 and
2, and 1, 2 and 3, respectively.

To obtain a “pure” quarterly expectations series, we proceed as follows: First, denote the fore-
casted quarterly inflation rate in quarters 1 to 4 as π̃q

1, π̃q
2, π̃q

3, and π̃q
4, respectively. Similarly, let

πq
1, πq

2, πq
3 be the realized quarterly inflation rates in quarters 1, 2, and 3, respectively. Then, the

forecasted quarterly inflation rates are calculated as follows:

π̃q
1 = π̃a

1/4
π̃q

2 = (π̃a
2 − πq

1)/3
π̃q

3 = (π̃a
3 − πq

1 − πq
2)/2

π̃q
4 = (π̃a

4 − πq
1 − πq

2 − πq
3)

The remaining data are quarterly time series from Statistics Canada’s database.
Any monthly data are converted to quarterly frequency.

Output gap is the deviation of real GDP (yt = lnYt) from its steady state, approximated by
a quadratic trend: ŷ = 100(yt − ȳt), where Yt = I56001− I56013− I56018.

Price inflation is the quarterly growth rate of the total GDP deflator:
πt = 100(lnPt − lnPt−1) and Pt = D15612

Wage inflation is the quarterly growth rate of compensation of employees:
wt = 100(lnWt − lnWt−1), where Wt = D17023/Nt.
Nt = LFSA201 for 1970:1-1975:4 and Nt = D980595 for 1976:1-2000:4

Labour income share is the ratio of total compensation and nominal GDP: lst = lnSt, and
st = 100(lst − s), the labour income share in deviation from its steady-state, where s =
lnS, S =

∑T
t ln(St)/T and St = (D17023−D17001)/(D15612 ∗ Yt).

Average real marginal costs for CD: rmcavg
t = st.
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B. The AR test and related procedures

Consider the following structural equation:

y = Y δ + X1κ + u, (B.1)

where y is a T ×1 dependent variable, Y is a T ×m matrix of endogenous variables, X1 is a T ×k1

matrix of exogenous variables, and u is an error term that satisfies standard regularity conditions
typical of IV regressions; see Dufour and Jasiak (2001). In our context (see section 3), y is the
T -dimensional vector of observations on πt, Y is the T × 2 matrix of observations on st and π̃t+1

[or πt+1, depending on the context], X1 is the vector of observations on the inflation lag πt−1, X2

is the T × k2 matrix of the instruments, and u is the T -dimensional vector of error terms ut.
Suppose that the reduced form associated with the right-hand-side endogenous regressors is

Y = X1Π1 + X2Π2 + V (B.2)

where V is an T ×m matrix of error terms assumed to be cross-correlated and correlated with u,
and X2 is the matrix of available instruments.17 In this case, the reduced form associated with (B.1)
is

y = X1p1 + X2p2 + u + V δ, (B.3)

p1 = Π1δ + κ, p2 = Π2δ. (B.4)

Identification constraints follow from (B.4) and amount to the rank condition

rank(Π2) = m. (B.5)

Consider hypotheses of the form
H0 : δ = δ0. (B.6)

In this case, the model transformed as follows

y − Y δ0 = Y (δ − δ0) + X1κ + u,

has reduced form

y − Y δ0 = X1[Π1 (δ − δ0) + κ] + X2[Π2 (δ − δ0)] + u + V (δ − δ0) . (B.7)

In view of this, the AR test assesses the exclusion of X2 (of size T×k2) in the regression of y−Y δ0

17In Dufour and Taamouti (2005b) and Dufour (2003), we stress that: (i) linearity of the latter reduced form is strictly
not necessary, (ii) further exogenous regressors ("excluded" instruments) may enter into the equation in addition to the
instrument set. To present the test in its simplest form, we maintain the standard linear form (B.2) and refer the reader
to later references for disucussion of the more general setting. Note that the assumptions regarding the reduced form for
Y do not affect the actual implementation of the test, so our simplified presentation does not lack generality for practical
purposes.
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on X1 and X2, which can be conducted using a standard F-test. Let X = (X1, X2), and define

M = I −X(X ′X)−1X ′, M1 = I −X1(X ′
1X1)−1X ′

1.

The statistic then takes the form

AR (δ0) =
(y − Y δ0)

′ (M1 −M) (y − Y δ0) /k2

(y − Y δ0)
′M (y − Y δ0) / (T − k1 − k2)

. (B.8)

Under the null hypothesis, assuming strong exogeneity and identically, independently distributed
(i.i.d.) normal errors,

AR (δ0) ∼ F (k2, T − k1 − k2). (B.9)

Following the usual classical regression analysis, the latter strong hypotheses on the error terms can
be relaxed so that, under standard regularity conditions,

k2 AR (δ0)
asy∼ χ2 (k2) . (B.10)

It is important to emphasize that identification constraints are not used here (exactly or asymptot-
ically). In other words (B.9) or (B.10) hold whether (B.5) is verified or not; this is what “identi-
fication robustness” usually means. The test can be readily extended to accommodate additional
constraints on the coefficients of (the full vector or a any subset of) the X1 variables. For example,
the hypothesis

H0 : δ = δ0, κ = κ0, (B.11)

can be assessed in the context of the transformed regression

y − Y δ0 −X1κ0 = X1[Π1 (δ − δ0) + (κ− κ0)}
+X2[Π2 (δ − δ0)] + u + V (δ − δ0) (B.12)

which leads to the following F-statistic

AR
(
δ0, κ0

)
=

(y − Y δ0 −X1κ0)
′ (I −M) (y − Y δ0 −X1κ0) /(k1 + k2)

(y − Y δ0 −X1κ0)
′M (y − Y δ0 −X1κ0) / (T − k1 − k2)

. (B.13)

While the test in its original form was derived for the case where the first-stage regression is
linear, we re-emphasize that it is in fact robust to: (i) the specification of the model for Y , and (ii)
excluded instruments; in other words, the test is valid regardless of whether the first-stage regression
is linear, and whether the matrix X2 includes all available instruments. As argued in Dufour (2003),
since one is never sure that all instruments have been accounted for, the latter property is quite
important. Most importantly, this test [and several variants discussed in Dufour (2003)] is the only
truly pivotal statistic whose properties in finite samples are robust to the quality of instruments.

Note that exactness strictly requires that we can condition on X (i.e. we can take X as fixed
for statistical analysis). This holds particularly for the instruments. In the presence of weakly ex-
ogenous regressors, the test remains identification-robust. The intuition underlying this result is the
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following: conducting the test via the Anderson-Rubin regressions (B.7)-(B.12) [which constitute
statistical reduced forms] easily transforms the test problem from the IV-regression [which requires
(B.5)] to the classical linear regression statistical framework [which does not require (B.5)]. This
provides an attractive solution to identification difficulties, a property not shared by IV-based Wald
statistics nor GMM-based J-tests.

Despite the latter desirable statistical properties, the test as presented above provides no guid-
ance for practitioners regarding the choice of instruments. In addition, simulation studies reported
in the above-cited references show that the power of AR-type tests may be affected by the number
of instruments. To see this, consider the case of (B.1)-(B.6): here, the AR test requires assessing
(in the regression of y − Y δ0 on X1 and X2) the exclusion of the T × k2 variables in X2, even
though the number of structural parameters under test is m (the structural parameter under test δ
is m × 1). On recalling that identification entails k2 ≥ m, we see that over-identification (or al-
ternatively, the availability of more instruments) leads to degrees-of-freedom losses with obvious
implication on power. To circumvent this problem, an optimal instrument (in the sense that it yields
a point-optimal test) is given by

Z̄ = X2Π2

where Π2 is the coefficient of X2 in the first-stage regression, i.e. the regression of Y on X1 and X2;
see Dufour and Taamouti (2003b). Formally, this implies applying (B.9) or (B.13), replacing X2 by
Z̄ (observe that X2 intervene in these statistics via M = I−X(X ′X)−1X ′, where X = (X1, X2)).

Clearly, the latter optimal instrument involves information reduction, for the associated AR-test
amounts to testing for the exclusion of the T ×m variables in Z̄, which preserves available degrees-
of-freedom even if the model is highly over-identified. In other words, the optimal test can reflect
the informational content of all available instruments with no statistical costs.

Unfortunately, Π2 is unknown so the approximate optimal instruments needs to be estimated,
with obvious implications on feasibility and exactness. Dufour (2003) shows that if the OLS esti-
mator

Π̂2 = (X ′
2M1X2)−1X ′

2M1Y (B.14)

of Π2 in the unrestricted reduced form multivariate regression (B.2) is used in the construction of
Z̄, then the associated statistic coincides with the LM criterion defined by Wang and Zivot (1998).
In addition, the K-statistic of Kleibergen (2002) may be interpreted as based on an approximation
of the optimal instrument [see Dufour and Khalaf (2003)]. In this case, Π2 is replaced by its
constrained reduced form OLS estimates imposing the structural identification condition (B.5):

Π̂0
2 = Π̂2 − (X ′

2M1X2)−1X ′
2M1 [y − Y δ0]

[y − Y δ0]
′MY

[y − Y δ0]
′M [y − Y δ0]

. (B.15)

Wang and Zivot (1998) show that the distribution of the LM statistic is bounded by the χ2 (k2)
distribution; Kleibergen (2002) shows that a χ2 (m) cut-off point is asymptotically identification-
robust for the K-statistic. To obtain an F (m, .) or χ2 (m) cut-off point for both statistics correcting
for plug-in effects, split sample methods (where the first sub-sample is used to estimate Π2 and the
second to run the AR-test based on the latter estimate) may also be exploited; see Dufour and Jasiak
(2001) and Dufour and Taamouti (2003b).
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