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Top-Cycle Rationalizability

Yves Sprumont and Lars Ehlers∗

September 26, 2005

Abstract. We identify necessary and sufficient conditions for the choice
set from every subset A of a (finite) universal set X to coincide with the top

cycle in A of some fixed tournament on X.





1. Introduction
The standard economic interpretation of rationality is preference maximization: the
decision maker is assumed to possess a preference relation over a relevant universe of
alternatives; he chooses from any feasible set he faces the maximal elements of that
relation in that set.
This hypothesis implies strong behavioral regularities, two of which are of special

interest to us here. First, choices are context-free: if the decision maker chooses x,
but not y, from a set A containing both alternatives, then he cannot choose y, and
not x, from any other set B containing them. Second, choices are acyclic: if the
decision maker chooses only x from the pair {x, y} and only y from the pair {y, z},
then he cannot choose only z from the pair {x, z}.
Both context-dependent and cyclic choices are persistently observed: see, e.g.,

Loomes, Starmer and Sugden (1991) and Camerer (1994). These observations call
for non-standard interpretations of rationality.
One interesting approach postulates that choices are based on several preference

relations. Kalai, Rubinstein and Spiegler (2002) assume multiple relations and use
each of them to choose from some, but typically not all, feasible sets. Manzini and
Mariotti (2005) apply sequentially a fixed ordered list of (incomplete) relations to
all feasible sets. Xu and Zhou (2004) analyze choices that arise as subgame-perfect
equilibria of games with perfect information. These theories are able to account for
both context-dependent and cyclic choices. To the extent that they postulate more
than one underlying preference relation, they constitute rather major departures from
the standard view of rationality.

∗Département de Sciences Economiques and CIREQ, Université de Montréal, C.P. 6128,
succursale Centre-ville, Montréal QC, H3C 3J7, Canada (yves.sprumont@umontreal.ca,
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B. Dutta, S. Lahiri, J.-F. Laslier, M. LeBreton, P. Manzini, M. Mariotti, H. Moulin, A. Rubinstein,
and L. Zhou. This research was supported by FCAR and SSHRC.
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Top-Cycle Rationalizability 2

We explore here an alternative that remains closer to it. While context-dependent
choices clash directly with the hypothesis of a single underlying preference, we argue
that a coherent explanation of cyclic choices need not invoke multiple preferences.
To see this, let us take a second look at the basic cyclic pattern of choice described

earlier. Any binary relation that would explain it would have to deem x better than y,
y better than z, and z better than x. This cyclic (strict) preference is not a difficulty
in itself; it only becomes one when we consider the feasible set {x, y, z} because no
maximal element of the revealed preference exists in that set.
If we weaken the requirement of maximality in a suitable way, however, the ob-

served cycle need no longer be inconsistent with a single underlying preference. One
weak notion of “maximality” is the top cycle. The top cycle of a (complete and
asymmetric) binary relation in a set (Moon, 1968) is the smallest nonempty subset
of it having the property that each alternative in the subset is better than every
alternative outside it. Schwartz (1972, 1986) defended the concept as an expression
of rational choice and proposed two extensions of it to binary relations that need not
be asymmetric. See also Deb (1977) and Duggan (2004). In our example, the top
cycle of the cyclic revealed preference in the set {x, y, z} is that set itself.
Suppose now that the decision maker is endowed with a complete, asymmetric,

but possibly cyclic relation on some finite universal set X. In every feasible subset,
he chooses the top cycle of that “tournament” in that subset. As we just saw, this
may produce cyclic choices. But it cannot yield context-dependent choices: if x, but
not y, belongs to the top cycle in some subset A containing y, then y cannot belong
to the top cycle in a set B containing x unless x belongs to the top cycle in B as well.
In what follows, we identify two sets of necessary and sufficient conditions for the

choice set from each subset A of X to coincide with the top cycle in A of some fixed
tournament on X.

2. Strong and weak forms of choice consistency
Following Arrow (1959), we model the choice behavior of a decision maker by means
of a choice rule defined over all subsets of a finite set. Let X be a finite set of
cardinality |X| ≥ 3 and let X be the set of nonempty subsets of X. A choice rule is a
mapping f : X → X such that f(A) ⊆ A for every A ∈ X . Note that, by definition,
f(A) is nonempty for every A ∈ X .
In principle, choice rules are observable objects; the purpose of choice theory

is to identify which properties of these rules are characteristic of various rational-
ity hypotheses. The standard form of rationality —maximization of a preference
preordering— is characterized by either of the following two well-known properties.

Weak Axiom of Revealed Preference (WARP). If x, y ∈ X and there is A ∈ X
such that x ∈ f(A) and y ∈ A\f(A), then there is no B ∈ X such that y ∈ f(B) and
x ∈ B.
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Choice Axiom (CA). IfA,B ∈ X , B ⊆ A, and f(A)∩B 6= ∅, then f(B) = f(A)∩B.
In different ways, these axioms express the idea that choices should be fully

context-free. Arrow (1959) showed that a choice rule f satisfies CA (or, equiva-
lently, WARP) if and only if there exists a complete, reflexive, and transitive binary
relation R on X such that f(A) coincides with the maximal elements of R in A for
every A ∈ X . This means that cyclic choices are ruled out as well. In order to allow
for possibly cyclic choices, we weaken the above conditions as follows.

Weakened Weak Axiom of Revealed Preference (WWARP). If x, y ∈ X and
there is A ∈ X such that x ∈ f(A) and y ∈ A\f(A), then there is no B ∈ X such
that y ∈ f(B) and x ∈ B\f(B).
Weak Choice Axiom (WCA). If A,B ∈ X , B ⊆ A, and f(A) ∩ B 6= ∅, then
f(B) ⊆ f(A).
The Weakened Weak Axiom of Revealed Preference only rules out choices that

are unambiguously context-dependent: if the decision maker selects an alternative x
and rejects another alternative y in some context, he cannot select y and reject x in
another context. We are not aware of any discussion of WWARP in the literature.
The Weak Choice Axiom states that if the feasible set shrinks but some cho-

sen alternatives remain feasible, then nothing new should appear in the choice set.
This condition appears in Bordes (1976) and is sometimes called the “dual Chernoff
condition”.
It is easy to see that WCA implies WWARP. Suppose the former is satisfied and

the later is violated. Let x, y ∈ X and A,B ∈ X be such that x ∈ f(A), y ∈ A\f(A),
y ∈ f(B), and x ∈ B\f(B). Since {x, y} ⊆ A and f(A) ∩ {x, y} 6= ∅, WCA requires
f({x, y}) ⊆ f(A), hence y /∈ f({x, y}). Similarly, {x, y} ⊆ B and f(B) ∩ {x, y} 6= ∅
imply f({x, y}) ⊆ f(B), hence x /∈ f({x, y}). Thus f({x, y}) = ∅, a contradiction.
We will see later that WWARP does not imply WCA and that both axioms are

consistent with cyclic choices. Because they are mild requirements, we complement
them with two further plausible conditions. These conditions are direct consequences
of WARP or CA but they are not implied by WWARP or WCA.

Binary Dominance Consistency (BDC). If A ∈ X , x ∈ A, and f({x, y}) = {x}
for all y ∈ A\{x}, then f(A) = {x}.
Weak Contraction Consistency (WCC). If A ∈ X and |A| ≥ 2, then f(A) ⊆S
x∈A f(A\{x}).
Binary Dominance Consistency says that an alternative that is chosen against

every single other alternative in a set should be the choice from that set as a whole.
It is the choice-rule formulation of what is sometimes called the “Condorcet winner
principle”.
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Weak Contraction Consistency says that nothing is chosen in a set of cardinality
k unless it is chosen in some of its subsets of cardinality k−1. This condition appears
in Lahiri (2001). It is much weaker than Chernoff’s (1954) Postulate 4, the classic
contraction consistency requirement that if B ⊆ A, then f(A)∩B ⊆ f(B). Note that
Weak Contraction Consistency implies the “Condorcet loser principle”: if f({x, y}) =
{y} for all y ∈ A\{x}, then f(A) ⊆ A\{x}.

3. Choice rules based on tournaments
In this section, we define a class of choice rules meeting all the weak consistency
requirements defined in Section 2, that is, WWARP, WCA, BDC, and WCC.
A (binary) relation P on X is a tournament if it is both complete (for all distinct

x, y ∈ X, (x, y) ∈ P or (y, x) ∈ P ) and asymmetric (for all x, y ∈ X, (x, y) ∈ P ⇒
(y, x) /∈ P ). As usual, the notation xPy means that (x, y) ∈ P .
A P -cycle (or just a cycle) in X is a sequence (x1, ..., xn) of elements of X, all

distinct, such that xiPxi+1 for i = 1, ..., n− 1 and xnPx1. When no confusion arises,
we call the set {x1, ..., xn} itself a cycle. The number n is its length.
Given A ∈ X , define P |A = P ∩ (A × A): this restriction of P to the subset A

is itself a tournament on A. The transitive closure of P |A, denoted P |A, is defined
as usual: for all x, y ∈ A, (x, y) ∈ P |A if and only if there exist a positive integer n
and x0, ..., xn ∈ A such that x = x0, xn = y, and xi−1Pxi for i = 1, ..., n. This is a
complete and transitive relation.

Definition 1. The top cycle of P in A, denoted t(P |A), is the set of maximal
elements of P |A in A : x ∈ t(P |A) if and only if xP |Ay for all y ∈ A\{x}.
Selecting from every feasible set the top cycle, in that set, of an arbitrary but

fixed tournament on the universal set defines a choice rule. Any such rule will be
called a top-cycle rule.

Definition 2. A choice rule f is a top-cycle rule if there exists a tournament P on
X such that f(A) = t(P |A) for all A ∈ X .
It is important to note that P |A does not coincide with P |A : therefore t(P |A) is

generally not the set of maximal elements of P in A, unless A = X. For that reason,
top-cycle choice rules need not satisfy the Weak Axiom of Revealed Preference or
Arrow’s Choice Axiom. They reflect a weaker form of rational choice.

Before we turn to our results, we record a few basic facts about the top cycle that
will be used in our proofs. For an in-depth study of the top cycle, we refer to Laslier
(1997).

Lemma. Let P be a tournament on X. Then,
(a) t(P |X) is either a singleton or a P -cycle;
(b) t(P |X) is the unique (inclusion) minimal set Y ∈ X possessing the property that
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xPy for all x ∈ Y and all y ∈ X\Y ;
(c) the following statements are equivalent:
(i) t(P |X) = X;
(ii) there is a P -cycle of length |X| in X;
(iii) for each n = 3, ..., |X| , there is a P -cycle of length n in X;
(iv) for each x ∈ X and n = 3, ..., |X| , x belongs to a P -cycle of length n in X.

Proof. Statements (a) and (b) are well known. The equivalence of the first three
statements in (c) is also known: see, e.g., Harary (1969), Theorem 16.11 and Corollary
16.11(a). Since (iv) implies (iii), it suffices to prove that (ii) implies (iv). The proof
mimics that of Theorem 16.11 in Harary (1969). Fix a P -cycle of length |X| in X:
x1Px2P...Px|X|Px1 and let x ∈ X, say, x = x1.
First, observe that x belongs to a cycle of length 3: if t∗ denotes the smallest

t ∈ {3, ..., |X|} such that xtPx1, then x1Pxt∗−1Pxt∗Px1 is such a cycle.
Next, proceed by induction. Fix n, 3 ≤ n ≤ |X|− 1, and suppose x belongs to a

cycle of length n in X, say x = y1Py2P...PynPy1 = x. Distinguish two cases.

Case 1. There exist z ∈ X\{y1, ..., yn} and t, t0 ∈ {1, 2, ..., n} such that ytPzPyt0 .
If y1Pz, let t∗ be the smallest i ∈ {1, ..., n} such that zPyi. Then y1P...Pyt∗−1P

zPyt∗P...PynPy1 is a P -cycle of length n+1 inX containing y1. If zPy1, the argument
is similar: let t∗ be the largest i ∈ {1, ..., n} such that yiPz. Then y1P...Pyt∗P
zPyt∗+1P...PynPy1 (with the understanding that yn+1 = y1) is again a P -cycle of
length n+ 1 in X containing y1.

Case 2. There does not exist z ∈ X\{y1, ..., yn} and t, t0 ∈ {1, 2, ..., n} such that
ytPzPyt0 .
Then X\{y1, ..., yn} is partitioned into two subsets U and W , where

u ∈ U ⇔ uPyi for i = 1, ..., n,

w ∈ W ⇔ yiPw for i = 1, ..., n.

These sets are obviously disjoint. Because there is a P -cycle of length |X| in X,
neither set is empty and there exist u ∈ U and w ∈ W such that wPu. Then
uPy1P...Pyn−1PwPu is a P -cycle of length n+ 1 in X containing y1.

4. Equivalence results

There is a tight connection between the weak forms of choice consistency described
in Section 2 and the top-cycle rules defined in Section 3. We begin by showing this
in the simpler case where all binary choices are clear-cut. Say that a choice rule f is
resolute if |f(A)| = 1 whenever |A| = 2.
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Theorem 1. For any choice function f , the following statements are equivalent:
i) f is resolute and satisfies WWARP, BDC, and WCC;
ii) f is resolute and satisfies WCA, BDC, and WCC;
iii) f is a top-cycle rule.

Proof. Step 1: Every top-cycle rule is resolute and satisfies WWARP, WCA, BDC,
and WCC.
Let P be a tournament on X. It is obvious that the top-cycle choice rule t(P |.)

is resolute and satisfies BDC. Because WWARP follows from WCA, we only need to
check WCA and WCC.

To check WCA, suppose B ⊆ A and t(P |A) ∩B 6= ∅. Let x ∈ t(P |B) and z ∈ A.
We must show xP |Az. Pick y ∈ t(P |A)∩B. By definition of t(P |B), xP |By. Hence,
a fortiori, xP |Ay. By definition of t(P |A), yP |Az. By transitivity of P |A, xP |Az.
To check WCC, we first prove that t(P |.) satisfies the so-called Strong Superset

Property (Bordes, 1976): if A,B ∈ X , B ⊆ A, and t(P |A) ⊆ B, then t(P |A) =
t(P |B).
Fix A,B satisfying the premises of that property. By statement (b) of the Lemma,

t(P |A) is the minimal nonempty subset C of A with the property

xPy for all x ∈ C and all y ∈ A\C. (1)

A fortiori, t(P |A) is a nonempty subset C of B with the property

xPy for all x ∈ C and all y ∈ B\C. (2)

Moreover, if a nonempty set C $ t(P |A) possessed property (2), it would also possess
property (1), a contradiction. Thus t(P |A) is a minimal nonempty subset C of B
with property (2). But such a minimal set is unique and equal to t(P |B). Thus
t(P |A) = t(P |B), as claimed.
We are now ready to establish WCC. Fix A ∈ X , |A| ≥ 2. The case |A| = 2 being

trivial, suppose |A| ≥ 3. Let x ∈ t(P |A). We show that there exists y ∈ A such that
x ∈ t(P |A\{y}).
If t(P |A) 6= A, let y ∈ A\t(P |A). Then t(P |A) ⊆ A\y ⊆ A and since t(P |.)

satisfies the Strong Superset Property, t(P |A\{y}) = t(P |A). So x ∈ t(P |A\{y}).
If t(P |A) = A, we know from the Lemma (more precisely, from the fact that (i)

implies (iv)) that x belongs to a P - cycle of length |A|−1 in A. That cycle is in A\{y}
for some y ∈ A\{x}. Since (ii) implies (i), that cycle coincides with t(P |A\{y}). Thus
x ∈ t(P |A\{y}).
Step 2: If a choice rule is resolute and satisfies WWARP, BDC, and WCC, then it
is a top-cycle rule.
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Let f satisfy the stated properties. Define P = {(x, y) ∈ X × X|x 6= y and
f({x, y}) = {x}}. Because f is defined on X (hence in particular on all subsets of
cardinality two) and is resolute, P is complete and asymmetric: it is a tournament
on X. We claim that

f(A) = t(P |A) (3)

for all A ∈ X .
By construction of P , (3) holds for all A ∈ X such that |A| ≤ 2. Next, proceed by

induction. Fix k ≥ 3 and assume that (3) holds for all A ∈ X such that |A| ≤ k− 1.
Let now A ∈ X be a set of cardinality |A| = k.
If |t(P |A)| = 1, t(P |A) consists of a single x ∈ A such that xPy, hence, f({x, y}) =

{x}, for all y ∈ A\{x}. By BDC, f(A) = {x} = t(P |A).
If |t(P |A)| ≥ 2, we first show that

t(P |A) ⊆ f(A). (4)

Suppose, by contradiction, that there exists x ∈ t(P |A)\f(A). This implies

f(A) ⊆ t(P |A) (5)

because if there exists y ∈ f(A)\t(P |A), then xPy by definition of t(P |A), and
therefore

x ∈ f({x, y}), y ∈ {x, y}\f({x, y}),
y ∈ f(A), x ∈ A\f(A),

contradicting WWARP.
Because of (5), t(P |A) 6= {x}. Thus t(P |A) is a cycle, necessarily of length n ≥ 3,

containing x: say, x = x1Px2P...PxnPx1 = x. We claim that

f(A) ∩ t(P |A) = ∅. (6)

To prove this, note first that x = x1 /∈ f(A) implies x2 /∈ f(A) since otherwise

x1 ∈ f({x1, x2}), x2 ∈ {x1, x2}\f({x1, x2}),
x2 ∈ f(A), x1 ∈ A\f(A),

contradicting WWARP.
Repeating this argument yields successively x3 /∈ f(A), ..., xn /∈ f(A), proving

(6). But (6) and (5) imply that f(A) = ∅, a contradiction. We have proved (4).
To complete the proof of (3), suppose, by contradiction, that f(A) % t(P |A).

Let x ∈ f(A)\t(P |A). By WCC, there exists y ∈ A such that x ∈ f(A\{y}).
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Because |t(P |A)| ≥ 2, t(P |A)∩ (A\{y}) 6= ∅. Because A\{y} ⊆ A and t(P |.) satisfies
WCA, t(P |A\{y}) ⊆ t(P |A). Hence x /∈ t(P |A) implies x /∈ t(P |A\{y}). But by the
induction hypothesis, f(A\{y}) = t(P |A\{y}). Thus x /∈ f(A\{y}), a contradiction.
Step 3: If a choice rule is resolute and satisfies WCA, BDC, and WCC, then it is a
top-cycle rule.
This follows from Step 2 and the fact that WCA implies WWARP.

5. Discussion
We briefly comment on our theorem and the related literature.

1) The properties in statement i) of Theorem 1 are independent, and so are those
in statement ii). The rule f(A) = A for all A ∈ X satisfies all properties in Theorem
1 except the resoluteness condition. For an example violating only BDC, fix X =
{x, y, z} and let f({x, y}) = f({x, z}) = {x}, f({y, z}) = {y}, and f(X) = {x, y}.
For an example violating onlyWWARP andWCA, letX = {x, y, z}, f({x, y}) = {x},
f({x, z}) = {z}, f({y, z}) = {y}, and f(X) = {x}. For an example violating only
WCC, let X = {w, x, y, z}, define the tournament P = {(x,w), (y, w), (z, w), (x, y),
(y, z), (z, x)}, and let f(A) = t(P |A) for all A ∈ X\{X} and f(X) = X.
2) Tournaments have been extensively studied in graph theory (see in particular

Moon’s (1968) book) and in social choice theory (see Moulin’s (1984) survey and
Laslier’s (1997) book). Most contributions in social choice define “choice procedures”
as mappings selecting, for every A ∈ X and every possible tournament on X, a set
of alternatives in A. This is perfectly in line with the intended interpretation of a
tournament as the observable outcome of some vote. It allows one to define and use
properties relating choices across tournaments: an example is the neutrality property
stating that if two tournaments may be obtained from each other by relabeling the
alternatives, then the corresponding choice sets can be obtained from each other by
the same relabeling. Moulin (1986), for instance, characterizes both the top-cycle and
the so-called uncovered set choice procedures by combining axioms of that nature with
properties relating choices across feasible sets. Dutta (1988) offers a corresponding
characterization of the minimal covering set choice procedure. These authors do not
obtain “exact” axiomatizations: they show that the choice procedures they consider
are the minimal ones satisfying the axioms they impose.
In contrast to the social choice literature, we focus on choices made by a decision

maker whose preferences are not observable. This constrains us to use only properties
relating choices across feasible sets. In that spirit, Duggan (1997) offers a character-
ization of the class of choice rules satisfying WCA alone: he shows that the axiom is
equivalent to rationalizability by a particular type of pseudo-relation called a proper
weak pseudo-order. A pseudo-relation is a collection of binary relations, one for each
A ∈ X . Our theorem is about choices based on a single binary relation.
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3) A variant of Theorem 1 holds without the resoluteness assumption. Let R
be a complete, but not necessarily asymmetric, relation and let P (R) = {(x, y) ∈
X ×X|(x, y) ∈ R and (y, x) /∈ R}. For any A ∈ X , the weak top cycle of R in A,
denoted wt(R|A), is the set of maximal elements of R|A in A. The concept is due to
Schwartz (1972, 1986), who calls it the GETCHA set. Schwartz shows that it is the
minimal nonempty subset B of A with the property that xP (R)y for all x ∈ B and
all y ∈ A\B. Call a choice rule f a weak top-cycle rule if there is a complete relation
R on X such that f(A) = wt(R|A) for all A ∈ X .
Theorem 2. A choice rule f satisfies WCA, BDC, and WCC if and only if it is a
weak top-cycle rule.

Proof. A straightforward modification of Step 1 of the proof of Theorem 1 shows
that any weak top-cycle rule meets WCA, BDC, and WCC.
Conversely, let f satisfy the stated properties. Define R = {(x, y) ∈ X ×X|x ∈

f({x, y})}. By construction
f(A) = wt(R|A) (7)

whenever |A| ≤ 2. Proceeding by induction, fix k ≥ 3, assume (7) holds for all A ∈ X
such that |A| ≤ k − 1, and let A ∈ X be a set of cardinality |A| = k.
Suppose first that |f(A)| = 1, say, f(A) = {x}. For any y ∈ A\{x}, {x, y} ⊆ A

and f(A) ∩ {x, y} 6= ∅. By WCA, f({x, y}) ⊆ f(A), that is, f({x, y}) = {x}. Since
this is true for all y ∈ A\{x}, we obtain wt(R|A) = {x} = f(A).
Suppose next that |f(A)| > 1. In this case we must have |wt(R|A)| > 1 as well

because if wt(P |A) consists of a single x ∈ A, then f({x, y}) = {x} for all y ∈ A\{x}
and BDC implies f(A) = {x}.
Then, for all x ∈ A, A\{x} ⊆ A and f(A)∩ (A\{x}) 6= ∅. By WCA, f(A\{x}) ⊆

f(A). Thus, ∪x∈Af(A\{x}) ⊆ f(A). Combining this with WCC,

∪x∈Af(A\{x}) = f(A).

Applying the same argument to wt(R|.) instead of f , we obtain

∪x∈Awt(R|A\{x}) = wt(R|A).

By the induction hypothesis, f(A\{x}) = wt(R|A\{x}) for every x ∈ A. Therefore
f(A) = ∪x∈Af(A\{x}) = ∪x∈Awt(R|(A\{x})) = wt(R|A).
Lahiri (2001) proves a variant of Theorem 2. Instead of WCA, he uses a more

complex condition dubbed Expansion Independence: if A ∈ X , x ∈ f(A), z ∈ X\A,
and there exists y ∈ A such that y ∈ f({y, z}), then x ∈ f(A ∪ {z}). We find this
requirement somewhat tailored to the weak top-cycle rules. In particular, it is easy to
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see that they are the minimal rules satisfying it: if f meets Expansion Independence,
there is a complete relation R on X such that f(A) ⊇ wt(R|A) for all A ∈ X .1
Interestingly, WWARP cannot replace WCA in Theorem 2 (and is thus a strictly

weaker axiom): there exist choice rules meeting WWARP, BDC, and WCC that are
not weak top-cycle rules. For a simple example, let X = {x, y, z}, f({x, y}) = {x, y},
f({x, z}) = {x}, f({y, z}) = {y}, and f(X) = {x}. This choice rule meets WWARP,
BDC, and WCC. If R is a complete relation such that f = wt(R|.), the choices from
pairs force R = {(x, y), (y, x), (x, z), (y, z)}. But then wt(R|X) = {x, y} 6= f(X): f
is not a weak top-cycle rule.
WWARP is of particular interest as the weakest form of the requirement that

choices be context-independent. Its implications for non-resolute choice rules remain
unclear and deserve further study.
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