
 

Cahier 05-2012
 

Single-Plateaued Choice
 

Walter BOSSERT and 
Hans PETERS 

 



 

 

CIREQ, Université de Montréal 
C.P. 6128, succursale Centre-ville 
Montréal (Québec)  H3C 3J7 
Canada 

 

téléphone :   (514) 343-6557 
télécopieur : (514) 343-7221 
cireq@umontreal.ca 
http://www.cireq.umontreal.ca

        

 

 

 

 
 
Le Centre interuniversitaire de recherche en économie quantitative (CIREQ) regroupe des chercheurs 
dans les domaines de l'économétrie, la théorie de la décision, la macroéconomie et les marchés financiers, 
la microéconomie appliquée et l’économie expérimentale ainsi que l'économie de l'environnement et des 
ressources naturelles. Ils proviennent principalement des universités de Montréal, McGill et Concordia. Le 
CIREQ offre un milieu dynamique de recherche en économie quantitative grâce au grand nombre d'activités 
qu'il organise (séminaires, ateliers, colloques) et de collaborateurs qu'il reçoit chaque année. 
 
The Center for Interuniversity Research in Quantitative Economics (CIREQ) regroups researchers in the 
fields of econometrics, decision theory, macroeconomics and financial markets, applied microeconomics and 
experimental economics, and environmental and natural resources economics. They come mainly from the 
Université de Montréal, McGill University and Concordia University. CIREQ offers a dynamic environment of 
research in quantitative economics thanks to the large number of activities that it organizes (seminars, 
workshops, conferences) and to the visitors it receives every year. 

 
 
 

Cahier 05-2012 
 

Single-Plateaued Choice 
 

Walter BOSSERT and Hans PETERS 

 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ce cahier a également été publié par le Département de sciences économiques de 
l’Université de Montréal sous le numéro (2012-04). 

This working paper was also published by the Department of Economics of the 
University of Montreal under number (2012-04). 
 
Dépôt légal - Bibliothèque nationale du Canada, 2012, ISSN 0821-4441 
Dépôt légal - Bibliothèque et Archives nationales du Québec, 2012 
   ISBN-13 : 978-2-89382-628-8 



Single-plateaued choice∗

Walter Bossert

Department of Economics and CIREQ, University of Montreal

P.O. Box 6128, Station Downtown

Montreal QC H3C 3J7, Canada

walter.bossert@umontreal.ca

and

Hans Peters

Department of Quantitative Economics, Maastricht University

P.O. Box 616

6200 MD Maastricht, The Netherlands

h.peters@maastrichtuniversity.nl

This version: May 22, 2012

Abstract. Single-plateaued preferences generalize single-peaked preferences by allowing

for multiple best elements. These preferences have played an important role in areas such

as voting, strategy-proofness and matching problems. We examine the notion of single-

plateauedness in a choice-theoretic setting. Single-plateaued choice is characterized by

means of a collinear interval continuity property in the presence of independence of irrele-

vant alternatives. Further results establish that our notion of single-plateauedness conforms

to the motivation underlying the term and we analyze the consequences of alternative con-
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1 Introduction

The notion of single-peakedness has been of fundamental importance in many fields within

economic theory. An early application of single-peakedness is Black’s (1948) well-known

result that a preference-domain restriction of this nature ensures that the majority rule

generates transitive social preferences. The contributions by Inada (1969) and Sen (1970)

are other examples for the use of value restrictions that focus on single-peaked preference

profiles. Single-peakedness also appears in the study of strategy-proof social choice func-

tions; see, for instance, Moulin (1980) and Sprumont (1991). While much of the work on

single-peakedness focuses on one dimension, definitions suitable for higher dimensions are

available. These generalizations are used by Barberà, Gul and Stacchetti (1993), Barberà

and Jackson (1994), Dutta, Peters and Sen (2002), Ehlers and Storcken (2008) and Le

Breton and Weymark (2011), among others. Ballester and Haeringer (2011) character-

ize one-dimensional single-peaked preference profiles by providing necessary and sufficient

conditions for the existence of a single ranking such that all preferences in the profile are

single-peaked with respect to this ranking.

Single-peakedness is analyzed in a choice-theoretic setting by Bossert and Peters (2009).

The present paper generalizes the analysis carried out there to single-plateaued choice,

which within the same framework arises naturally if multi-valued instead of single-valued

choice is considered. See Moulin (1984) for an early contribution that employs single-

plateauedness in the context of voting theory. Berga (1998), Ehlers (2002), Barberà (2007)

and Berga and Moreno (2009), among others, examine strategy-proofness with single-

plateaued preferences.

We do not impose any restriction on the dimension of the domain; our results are

valid for any fixed-dimensional Euclidean space. The basic object to be studied is a choice

correspondence that selects, for any fixed dimension n ∈ N, a non-empty, closed and

convex subset of chosen elements from each non-empty, compact and convex subset of

Rn, the Euclidean n-dimensional space. As is the case for Bossert and Peters (2009), we

concentrate on choice correspondences that satisfy independence of irrelevant alternatives,

a contraction consistency condition that is closely related (but, in general, not equivalent)

to the rationalizability of a choice correspondence; see, for instance, Richter (1966, 1971).

Given the nature of the standard applications of single-peakedness and single-plateauedness,

this focus appears to be suitable for the issue to be addressed.

In the presence of independence of irrelevant alternatives (or the weak axiom of re-

vealed preference which is equivalent to independence on our domain), we characterize
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single-plateaued choice by means of collinear interval continuity, a continuity property that

is restricted to points on the same line. While this result and its proof display some

analogy to the single-valued case examined in Bossert and Peters (2009), there are some

significant differences in the methods used to establish a link between our formal definition

of singled-plateauedness and its interpretation. Furthermore, the multi-valued case allows

us to work with a considerably richer setup when analyzing various alternative continuity

assumptions. In our generalized framework, moving from collinear interval continuity to

continuity (or even lower semicontinuity) imposes additional restrictions on possible choice

correspondences that do not play any role in the single-valued case.

In the following section, we state the formal definition of the choice correspondences

to be considered throughout the paper. The domain of our correspondence consists of all

non-empty, compact and convex subsets of Rn. The choice correspondence is assumed to

be closed-valued and convex-valued. We introduce the axiom of independence of irrelevant

alternatives, familiar from the literature on rational choice. Because our domain is closed

under intersection, independence of irrelevant alternatives is equivalent to the weak axiom

of revealed preference. It is often more convenient to use one of the two equivalent axioms

in some of our later proofs and, in order to make the paper self-contained, we provide a

short proof of this well-known equivalence result as a preliminary observation.

Section 3 focuses on the definition, interpretation and characterization of our notion of

single-plateaued choice. We formulate the property by requiring that whenever a point x

is directly revealed preferred to another point y, then x must be directly revealed preferred

to any point on the half-line that starts at x and passes through y. This is in accord

with the one-dimensional notion of single-plateauedness for preference relations and we

prove that, using our definition, a single-plateaued choice correspondence has an important

characteristic that further underlines the appeal of this notion of single-plateauedness. In

particular, single-plateauedness implies that there exists a (possibly empty) closed and

convex subset P of Rn, to be interpreted as the plateau. Whenever the intersection of this

plateau and the feasible set is non-empty, the choice correspondence selects this intersection.

If the intersection of P and the feasible set is empty, the set of chosen points must be

contained in the boundary of the feasible set. These properties of P capture the idea

underlying single-plateauedness: there is a set of points that are chosen whenever feasible,

and as we move away from this plateau along any half-line, the points become progressively

less desirable. It is possible that the plateau is empty; this situation is the analogue

of a single-plateaued or single-peaked preference relation that is monotonic in the one-

dimensional space.
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Collinear interval continuity restricts the familiar continuity requirement to points along

a given straight line and our main characterization theorem establishes the equivalence of

single-plateauedness and collinear interval continuity in the presence of independence of

irrelevant alternatives. Given the observation that independence and the weak axiom are

equivalent in our setting, the characterization result can be rephrased using the weak

axiom of revealed preference and independence of irrelevant alternatives interchangeably.

We conclude Section 3 with the statement of a corollary to this effect.

In Sections 4 and 5, we examine the consequences of using alternative continuity prop-

erties and the importance of the closedness and convexity assumptions that we impose on

chosen sets.

Our first observation in Section 4 is that, parallel to the single-peaked case discussed

in Bossert and Peters (2009), continuity of the choice correspondence is not implied by

the conjunction of independence of irrelevant alternatives and collinear interval continu-

ity. Thus, there are additional restrictions on choice correspondences if collinear interval

continuity is strengthened to continuity. We prove a theorem showing that, in the contin-

uous case, the set of plateau points P must be strictly convex rather than merely convex.

Moreover, if the intersection of P and the feasible set is empty, the resulting choice (con-

tained in the boundary of the feasible set) must be single-valued. We also point out that

lower semicontinuity, if added to independence and collinear interval continuity, leads to

the same additional restrictions: strict convexity of P and single-valuedness of boundary

choices when no plateau points are feasible. In contrast, upper semicontinuity cannot be

used in this fashion, as we illustrate with an example. Furthermore, we show that upper

semicontinuity or lower semicontinuity alone is not sufficient to imply collinear interval

continuity even in the presence of independence of irrelevant alternatives.

Section 5 shows that both closed-valuedness and convex-valuedness of the choice corre-

spondence are essential for our results. To this end, we provide an example of a choice cor-

respondence that satisfies independence, single-plateauedness and convex-valuedness but

violates closed-valuedness, and a closed-valued, independent and single-plateaued choice

correspondence that is not convex-valued.

Section 6 collects a few concluding remarks.

2 Independent choice correspondences

Suppose n ∈ N is fixed and let C = {C ⊆ Rn | C is non-empty, compact and convex}. A

choice correspondence is a mapping ϕ: C →→ Rn such that ∅ 6= ϕ(C) ⊆ C and ϕ(C) is closed
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and convex for all C ∈ C.

The direct revealed preference relation Rϕ of ϕ is defined as follows. For all x, y ∈ Rn,

xRϕy ⇔ there exists C ∈ C such that x ∈ ϕ(C) and y ∈ C.

The asymmetric part of Rϕ is denoted by Pϕ.

To define the direct revealed strict preference relation R∗
ϕ of ϕ, let, for all x, y ∈ Rn,

xR∗
ϕy ⇔ there exists C ∈ C such that x ∈ ϕ(C) and y ∈ C \ ϕ(C).

By definition – thus, independently of the assumptions on C and ϕ – the set inclusion

Pϕ ⊆ R∗
ϕ is valid. To see that this is the case, suppose x, y ∈ Rn are such that xPϕy. Thus,

there exists C ∈ C such that x ∈ ϕ(C) and y ∈ C and, moreover, there does not exist a

D ∈ C such that y ∈ ϕ(D) and x ∈ D. This implies, in particular, that y 6∈ ϕ(C) and,

therefore, y ∈ C \ ϕ(C). Hence xR∗
ϕy, which establishes that Pϕ ⊆ R∗

ϕ.

The reverse set inclusion R∗
ϕ ⊆ Pϕ does not follow without further assumptions. This

inclusion is a generalized version of Samuelson’s (1938) weak axiom of revealed preference.

See Bossert and Suzumura (2010, p. 17) for a discussion and alternative formulations of

the weak axiom of revealed preference. We state the set equality as a formal property.

Weak axiom of revealed preference. R∗
ϕ = Pϕ.

Below we show that in our framework the weak axiom of revealed preference is equiv-

alent to the condition of independence of irrelevant alternatives, which is a contraction-

consistency condition imposed on a choice correspondence. It is often referred to as Arrow’s

choice axiom (see Arrow, 1959) but, as Shubik (1982, pp. 420–421 and p. 423, footnote 2)

remarks, the axiom already appears in 1950 in an informal note authored by Nash. A ver-

sion for single-valued choice is due to Nash (1950) in the context of axiomatic bargaining

theory.

Independence of irrelevant alternatives. For all C, D ∈ C, if D ⊆ C and D∩ϕ(C) 6= ∅,
then ϕ(D) = D ∩ ϕ(C).

For future reference, we note that, because our domain C is closed under intersection

(that is, for all C, D ∈ C, the intersection C ∩ D is also in C whenever this intersection

is non-empty), the weak axiom of revealed preference is equivalent to independence of

irrelevant alternatives; see Hansson (1968) for a generalization of this observation. We

provide a proof of this known result in order to make our paper self-contained.
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Lemma 1 A choice correspondence ϕ: C →→ Rn satisfies independence of irrelevant alter-

natives if and only if ϕ satisfies the weak axiom of revealed preference.

Proof. Suppose first that ϕ satisfies independence of irrelevant alternatives. Because

Pϕ ⊆ R∗
ϕ by definition, we only have to establish the reverse set inclusion. Let x, y ∈ Rn

be such that xR∗
ϕy, that is, there exists C ∈ C such that x ∈ ϕ(C) and y ∈ C \ ϕ(C). By

definition, this implies xRϕy. If yRϕx, there exists D ∈ C such that y ∈ ϕ(D) and x ∈ D.

The intersection C ∩D is non-empty because it contains x and y and, because C is closed

under intersection, C ∩D ∈ C. Furthermore,

x ∈ C ∩D ∩ ϕ(C) and y ∈ C ∩D ∩ ϕ(D)

and, by independence of irrelevant alternatives,

ϕ(C ∩D) = C ∩D ∩ ϕ(C) and ϕ(C ∩D) = C ∩D ∩ ϕ(D).

This implies

C ∩D ∩ ϕ(C) = C ∩D ∩ ϕ(D).

Because y ∈ ϕ(D) and y 6∈ ϕ(C), this contradicts our hypothesis. Thus, xPϕy.

Now suppose ϕ satisfies the weak axiom of revealed preference, that is, R∗
ϕ = Pϕ. Let

C, D ∈ C be such that D ⊆ C and D ∩ ϕ(C) 6= ∅.
Let x ∈ D ∩ ϕ(C). This implies xRϕy for all y ∈ C and, thus, for all y ∈ D because

D ⊆ C. If x 6∈ ϕ(D), let z ∈ ϕ(D). By definition, zR∗
ϕx and, therefore, zPϕx by our

hypothesis. This contradicts xRϕz which follows from x ∈ ϕ(C) and z ∈ D ⊆ C. Thus,

x ∈ ϕ(D).

Now let x ∈ ϕ(D) which immediately implies x ∈ D and xRϕy for all y ∈ D. If

x 6∈ ϕ(C), let z ∈ D ∩ϕ(C). Because x ∈ ϕ(D) and z ∈ D, we obtain xRϕz. Furthermore,

x ∈ C because D ⊆ C and, because x 6∈ ϕ(C), zR∗
ϕx which is equivalent to zPϕx by

the weak axiom of revealed preference, and we obtain a contradiction to xRϕz. Thus,

x ∈ D ∩ ϕ(C) which completes the proof.

As is well-known (and apparent from the proof), the second implication in the above lemma

– the weak axiom of revealed preference implies independence of irrelevant alternatives –

is valid even if the domain of a choice correspondence is not closed under intersection.

3 Single-plateaued choice correspondences

For distinct x, y ∈ Rn, `(x, y) denotes the straight line through x and y and [x, y,→) is the

half-line through y starting at x. Furthermore, [x, y] is the line segment with end points x
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and y. The (relatively) half-open sets [x, y) and (x, y], and the (relatively) open set (x, y)

are defined analogously in the usual way. The boundary of C ∈ C is denoted by bd(C) and

the interior of C is int(C). Convergence of a sequence of sets in C is defined in terms of

the Hausdorff metric for compact subsets of Rn.

Single-plateaued choice correspondences are defined as follows.

Single-plateauedness. For all distinct x, y ∈ Rn, if xRϕy, then xRϕz for all z ∈ [x, y,→).

Thus, single-plateauedness demands that if a point x is directly revealed preferred to an-

other point y, then x is directly revealed preferred to any point on the half-line that starts

at x and passes through y.

The following theorem provides a motivation of this definition. It states that, given in-

dependence of irrelevant alternatives and single-plateauedness, there is a closed and convex

set (the plateau) such that, whenever the intersection of this plateau and a feasible set is

non-empty, this intersection is equal to the chosen set. If the intersection is empty, only

boundary points are chosen.

Theorem 1 Let the choice correspondence ϕ: C →→ Rn satisfy independence of irrelevant

alternatives and single-plateauedness. Then there exists a closed and convex set P ⊆ Rn

such that, for all C ∈ C,

(i) C ∩ P 6= ∅ ⇒ ϕ(C) = C ∩ P ;

(ii) C ∩ P = ∅ ⇒ ϕ(C) ⊆ bd(C).

Proof. Define

P = {x ∈ Rn | there exists C ∈ C such that x ∈ int(C) ∩ ϕ(C)}.

We first prove that this set P has property (i) of the theorem statement; (ii) follows

immediately from the definition of P . The proof is concluded by showing that P is closed

and convex.

(i) Suppose C ∈ C is such that C ∩ P 6= ∅.
First, we establish the set inclusion C ∩ P ⊆ ϕ(C). Let x ∈ Rn and D ∈ C be such

that x ∈ int(D) ∩ ϕ(D) and x ∈ C (and, thus, x ∈ C ∩ P ). By way of contradiction,

suppose x 6∈ ϕ(C). Let y ∈ ϕ(C). Since x ∈ int(D)∩ϕ(D), there exists z ∈ (x, y]∩D and,

by definition, we have xRϕz. Single-plateauedness implies xRϕy. Because y ∈ ϕ(C) and
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x ∈ C \ ϕ(C), we have yR∗
ϕx and, by independence of irrelevant alternatives and Lemma

1, it follows that yPϕx, a contradiction. Hence x ∈ ϕ(C).

To prove the reverse set inclusion, suppose x ∈ ϕ(C). Let y ∈ C ∩ P . If y = x, we are

done. If y 6= x, consider the set [x, y] ⊆ C. Since y ∈ [x, y]∩P , the set inclusion established

in the preceding paragraph implies that y ∈ ϕ([x, y]). Furthermore, by independence of

irrelevant alternatives, x ∈ ϕ([x, y]) because [x, y] ⊆ C. Now let D ⊇ [x, y] be such that

x ∈ int(D). Then y ∈ ϕ(D) by the set inclusion established in the preceding paragraph.

Independence of irrelevant alternatives implies ϕ([x, y]) = [x, y] ∩ ϕ(D). Thus, we must

have x ∈ int(D) ∩ ϕ(D) and hence x ∈ P which, together with x ∈ ϕ(C) ⊆ C, implies

x ∈ C ∩ P .

To prove that P is closed, suppose x ∈ bd(P )\int(P ). Let C ∈ C be such that C∩P 6= ∅
and x ∈ int(C). Because C ∩ P = ϕ(C) and ϕ(C) is closed, we have x ∈ int(C) ∩ ϕ(C)

and thus x ∈ P . Thus, P is closed.

Finally, we show that P is convex. If P = ∅ or P is a singleton set, we are done. If P

contains at least two distinct elements x and y, let C ∈ C be such that [x, y] ⊆ int(C). Thus,

C∩P 6= ∅. By part (i) established earlier in the proof, ϕ(C) = C∩P . Therefore, x, y ∈ ϕ(C)

and, because ϕ is convex-valued, [x, y] ⊆ ϕ(C). Therefore, [x, y] ⊆ int(C) ∩ ϕ(C) and, by

definition of P , [x, y] ⊆ P which proves that P is convex.

In the presence of independence of irrelevant alternatives, single-plateaued choice corre-

spondences can be characterized by means of a continuity property restricted to half-lines.

The axiom is an adaptation of an analogous property formulated for single-valued choice

in Bossert and Peters (2009).

Collinear interval continuity. For all distinct x, y ∈ Rn and for all sequences 〈xi〉i∈N

and 〈yi〉i∈N such that xi, yi ∈ `(x, y) for all i ∈ N, if limi→∞ xi = x and limi→∞ yi = y, then

limi→∞ ϕ([xi, yi]) = ϕ([x, y]).

The following lemma will be used in the proof of our characterization of single-plateaued

choice (Theorem 2).

Lemma 2 Let the choice correspondence ϕ: C →→ Rn satisfy independence of irrelevant

alternatives and single-plateauedness. Then for all distinct x, y ∈ Rn, if xRϕy, then zRϕz′

for all z′ ∈ [x, y,→) and for all z ∈ [x, z′].

Proof. Let x, y, z, z′ ∈ Rn be as in the statement of the lemma. We consider all possible

cases to establish the claim.
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(i) If z = z′, the conclusion of the lemma follows immediately because all singleton sets

are in the domain C of ϕ and, thus, Rϕ is reflexive.

(ii) If z = x, zRϕz′ follows from single-plateauedness.

(iii) If z ∈ (x, z′) and z ∈ ϕ([z, z′]), it follows that zRϕz′ by definition of Rϕ.

(iv) If z ∈ (x, z′) and z 6∈ ϕ([z, z′]), let w ∈ ϕ([z, z′]). Clearly, w ∈ (z, z′] and we

obtain wR∗
ϕz and hence wPϕz by independence of irrelevant alternatives and Lemma 1.

By single-plateauedness, xRϕw and wRϕx and, thus, x, w ∈ ϕ([x, w]) by independence

of irrelevant alternatives. Because ϕ is convex-valued, this implies z ∈ ϕ([x, w]) because

z ∈ [x, w]. This implies zRϕw, contradicting wPϕz. Thus, case (iv) cannot occur and the

proof is complete.

Our main result is the following characterization of single-plateaued choice.

Theorem 2 Let the choice correspondence ϕ: C →→ Rn satisfy independence of irrelevant

alternatives. Then ϕ satisfies single-plateauedness if and only if ϕ satisfies collinear interval

continuity.

Proof. Suppose ϕ satisfies single-plateauedness. Let x, y ∈ Rn be distinct and consider

sequences 〈xi〉i∈N, 〈yi〉i∈N, 〈zi〉i∈N and
〈
zi

〉
i∈N such that xi, yi ∈ `(x, y) for all i ∈ N,

ϕ([xi, yi]) = [zi, zi] for all i ∈ N, limi→∞ xi = x and limi→∞ yi = y.

Without loss of generality, assume that the sequences 〈zi〉i∈N and
〈
zi

〉
i∈N converge to z

and z, respectively (otherwise consider convergent subsequences). That is, limi→∞ zi = z

and limi→∞ zi = z. Clearly, z, z ∈ [x, y]. Let [x, y] = ϕ([x, y]). We prove that z = x and

z = y.

Suppose z 6∈ [x, y]. Thus, z 6∈ ϕ([x, y]) and, therefore, wR∗
ϕz for all w ∈ [x, y]. Lemma

1 implies wPϕz for all w ∈ [x, y]. Without loss of generality, suppose x ∈ (z, y].

If zi ∈ [x, z] for all sufficiently large i ∈ N, then ziRϕw for all w ∈ [x, y] and hence

zRϕw for all w ∈ [x, y] by Lemma 2, a contradiction. Analogously, if zi ∈ (z, x] for all

sufficiently large i ∈ N, then wPϕzi for all w ∈ [x, y] and also ziRϕw for all w ∈ [x, y],

again a contradiction. Thus, z ∈ [x, y] = ϕ([x, y]). Using a parallel argument, it follows

that z ∈ [x, y] = ϕ([x, y]) and, therefore, [z, z] ⊆ [x, y] = ϕ([x, y]).

Suppose, without loss of generality, that z ∈ (x, z] and z ∈ [z, y]. For w ∈ (x, z), we

have w ∈ ϕ([x, y]) and thus wRϕz. Lemma 2 then implies wRϕzi for all sufficiently large

i ∈ N but we also have ziPϕw (by ϕ([xi, yi]) = [zi, zi] and Lemma 1), a contradiction.

Hence

[z, z] = [x, y] = ϕ([x, y]).

8



Now suppose ϕ satisfies collinear interval continuity. Consider distinct x, y ∈ Rn such

that xRϕy and let z ∈ [x, y,→). We have to show that xRϕz. If z ∈ [x, y], the conclusion

follows immediately from independence of irrelevant alternatives. If z ∈ [x, y,→) \ [x, y],

suppose that, by way of contradiction, ¬xRϕz. This implies x 6∈ ϕ([x, z]). Let v ∈ ϕ([x, z]).

By independence of irrelevant alternatives, v ∈ ϕ([x, v]) and, using independence of irrel-

evant alternatives again (since x ∈ ϕ([x, y])), v ∈ (y, z]. For all w ∈ [y, v], we must have

either x ∈ ϕ([x, w]) or ϕ([x, w]) ⊆ (y, w]. Let wβ = βv + (1− β)y for all β ∈ [0, 1]. Define

β∗ = inf{β ∈ [0, 1] | x 6∈ ϕ([x, wβ])}. The existence of this infimum follows from the

observation that w1 = v ∈ ϕ([x, v]). Thus, x ∈ ϕ([x, wβ]) for all β ∈ [0, β∗). By collinear

interval continuity, x ∈ ϕ([x, wβ∗ ]) and ϕ([x, wβ∗ ]) ⊆ [y, wβ∗ ], a contradiction.

Combining Lemma 1 and Theorem 2, we obtain the following corollary, which separates

conditions on the choice correspondence from conditions on the associated revealed prefer-

ence.

Corollary 1 A choice correspondence satisfies independence of irrelevant alternatives and

collinear interval continuity if and only if it satisfies the weak axiom of revealed preference

and single-plateauedness.

4 Continuity

The standard continuity axiom familiar from the relevant literature is a strengthening of

collinear interval continuity.

Continuity. For all C ∈ C and for all sequences 〈Ci〉i∈N with Ci ∈ C for all i ∈ N, if

limi→∞ Ci = C, then limi→∞ ϕ(Ci) = ϕ(C).

Continuity is equivalent to the combination of upper and lower semicontinuity.

Upper semicontinuity. For all C ∈ C, for all sequences 〈Ci〉i∈N with Ci ∈ C for all i ∈ N,

for all x ∈ Rn and for all sequences 〈xi〉i∈N with xi ∈ ϕ(Ci) for all i ∈ N, if limi→∞ xi = x,

then x ∈ ϕ(C).

Lower semicontinuity. For all C ∈ C, for all sequences 〈Ci〉i∈N with Ci ∈ C for all i ∈ N
and for all x ∈ ϕ(C), if limi→∞ Ci = C, then there exists a sequence 〈xi〉i∈N with xi ∈ ϕ(Ci)

for all i ∈ N such that limi→∞ xi = x.

The conjunction of independence of irrelevant alternatives and collinear interval continuity

is not sufficient to imply continuity. The following example illustrates this observation.
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Example 1 Define a relation R on R2 by

xRy ⇔ [|x1| < |y1|] or [|x1| = |y1| and |x2| ≤ |y2|]

for all x, y ∈ R2. Define a single-plateaued (and single-valued) choice correspondence ϕ

by letting ϕ(C) be the (singleton) set of R-best elements in C for all C ∈ C. Then ϕ

satisfies independence of irrelevant alternatives and collinear interval continuity but it does

not satisfy continuity.

This example raises the question of which additional properties need to be satisfied if an

independent choice correspondence is to satisfy continuity rather than merely collinear

interval continuity. The following theorem provides an answer.

Theorem 3 Let the choice correspondence ϕ: C →→ Rn satisfy independence of irrelevant

alternatives and continuity. Then there exists a closed and strictly convex set P ⊆ Rn such

that, for all C ∈ C,

(i) C ∩ P 6= ∅ ⇒ ϕ(C) = C ∩ P ;

(ii) C ∩ P = ∅ ⇒ [ϕ(C) ⊆ bd(C) and |ϕ(C)| = 1].

Proof. Define P as in the proof of Theorem 1. In view of Theorem 1, it remains to be

shown that P is strictly convex and that choices are single-valued if case (ii) of the theorem

statement applies.

By Theorem 1, P is convex. If P is not strictly convex, the boundary bd(P ) contains a

line segment [x, y] with x 6= y. We can take a sequence 〈yi〉i∈N such that [yi, x] ∩ P = {x}
for all i ∈ N and limi→∞ yi = y. By (i), it follows that ϕ([x, yi]) = {x} for all i ∈ N. But

limi→∞[x, yi] = [x, y] and, again using (i), ϕ([x, y]) = [x, y], a contradiction to continuity.

If C ∈ C is such that C ∩ P = ∅, Theorem 1 implies ϕ(C) ⊆ bd(C). By way of

contradiction, suppose there exist x, y ∈ ϕ(C) such that x 6= y. Because ϕ is convex-

valued, [x, y] ⊆ ϕ(C). Independence of irrelevant alternatives implies ϕ([x, y]) = [x, y].

Let a sequence 〈Di〉i∈N be such that Di ∈ C, Di is strictly convex, x, y ∈ bd(Di) and

Di ∩ P = ∅ for all i ∈ N and, furthermore, limi→∞ Di = [x, y]. By part (ii) of Theorem

1, ϕ(Di) ⊆ bd(Di) and, because ϕ is convex-valued, |ϕ(Di)| = 1 for all i ∈ N. Continuity

requires that ϕ([x, y]) is single-valued but we have ϕ([x, y]) = [x, y], a contradiction.

It is easy to see that in the second and third paragraphs of the proof of Theorem 3 only lower

semicontinuity of ϕ is used. Hence, the theorem remains valid if in its premise continuity is
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replaced by collinear interval continuity together with lower semicontinuity. From there, it

can be proved – by using the conclusion of the theorem – that ϕ is actually continuous. On

the other hand, the following example shows that we cannot replace continuity by collinear

interval continuity together with upper semicontinuity.

Example 2 Let n = 2 and let P = {x ∈ R2 | −1 ≤ |x1| ≤ 1, −1 ≤ |x2| ≤ 1}. For

λ ∈ R denote λP = {(λx1, λx2) | (x1, x2) ∈ P}. Define the choice correspondence ϕ as

follows. If C ∈ C with C ∩ P 6= ∅, then let ϕ(C) = C ∩ P . If C ∈ C with C ∩ P = ∅,
then let λC = min{λ ∈ R | λ > 1, λP ∩ C 6= ∅} and let ϕ(C) = C ∩ λCP . Then

ϕ satisfies independence of irrelevant alternatives, collinear interval continuity and upper

semicontinuity but not continuity.

We conclude the section with examples of choice correspondences showing that the combi-

nation of independence of irrelevant alternatives with either upper or lower semicontinuity

is not sufficient to guarantee single-plateauedness or – equivalently, in view of Theorem 2

– collinear interval continuity.

Example 3 Let n = 1, so C is the set of all intervals [a, b] with a ≤ b. We define the

choice correspondences ϕ1 and ϕ2 as follows. For all [a, b] ∈ C,

ϕ1([a, b]) =

{
[a, b] if b ≤ 0

[max{a, 0}, b] if b > 0

and

ϕ2([a, b]) =

{
[a, b] if b < 0

[max{a, 0}, b] if b ≥ 0.

Then both ϕ1 and ϕ2 satisfy independence of irrelevant alternatives; ϕ1 satisfies upper but

not lower semicontinuity and ϕ2 satisfies lower but not upper semicontinuity. Both violate

single-plateauedness and collinear interval continuity.

5 Closedness and convexity

The assumptions that ϕ is closed-valued and that ϕ is convex-valued cannot be dispensed

with in our results – neither of them follows from our axioms. The following examples

show that closed-valuedness is required even in the presence of convex-valuedness and that

convex-valuedness is required even in the presence of closed-valuedness. For simplicity, we

state the examples for the one-dimensional case but they can be embedded in spaces of

higher dimension.
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Example 4 Let n = 1 and define a choice correspondence ϕ as follows. For all x, y ∈ R,

ϕ([x, y]) =


[x, y] ∩ (0, 1) if [x, y] ∩ (0, 1) 6= ∅;
{y} if y ≤ 0;

{x} if x ≥ 1.

This choice correspondence is convex-valued and satisfies independence of irrelevant alter-

natives and single-plateauedness. Closed-valuedness is violated.

Example 5 Let n = 1 and define a choice correspondence ϕ as follows. For all x, y ∈ R,

ϕ([x, y]) =



{y} if y ≤ 0;

{0, y} if x ≤ 0 and y ∈ (0, 1);

{x, y} if x > 0 and y ∈ (0, 1);

{0, 1} if x ≤ 0 and y ≥ 1;

{x, 1} if x ∈ (0, 1) and y ≥ 1;

{x} if x ≥ 1.

This choice correspondence is closed-valued and satisfies independence of irrelevant alter-

natives and single-plateauedness. Convex-valuedness is violated.

6 Concluding remarks

Our focus in this paper is on the description and characterization of single-plateauedness

in a general choice-theoretic setting. In the case of single-peaked choice, we also examined

notions of rationalizability and representability; see Bossert and Peters (2009). Because

the arguments involved are entirely parallel, we do not include a formal treatment of these

issues here.

In addition to our characterization which is of interest in its own right by clarifying some

links between single-plateauedness and a continuity property in the multi-valued frame-

work (Theorem 2), our results on the consequences of the definition of single-plateauedness

(Theorems 1,3) show that this is the natural way of formulating the notion of single-

plateauedness. Thus, our results provide a foundation for the assumption of ‘single-

plateaued’ preferences or utility functions in various applications.
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