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Bayesian Analysis for a Theory of Random
Consumer Demand: The Case of Indivisible

Goods

William J. McCausland∗

May 31, 2004

Abstract

McCausland (2004a) describes a new theory of random consumer
demand. Theoretically consistent random demand can be represented
by a “regular” “L-utility” function on the consumption set X.

The present paper is about Bayesian inference for regular L-utility
functions. We express prior and posterior uncertainty in terms of
distributions over the infinite-dimensional parameter set of a flexible
functional form. We propose a class of proper priors on the parameter
set. The priors are flexible, in the sense that they put positive proba-
bility in the neighborhood of any L-utility function that is regular on
a large subset X̄ of X; and regular, in the sense that they assign zero
probability to the set of L-utility functions that are irregular on X̄.

We propose methods of Bayesian inference for an environment with
indivisible goods, leaving the more difficult case of infinitely divisible
goods for another paper. We analyse individual choice data from a
consumer experiment described in Harbaugh et al. (2001).

Key words: Consumer demand, Bayesian methods, Flexible functional
Forms, Shape restrictions
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software for computations reported in this paper is available from the author. I alone am
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1 Introduction

McCausland (2004a) describes a new theory of random consumer demand.
Theoretically consistent random demand can be represented by a regular L-
utility1 function on the consumption set X. Regular L-utility functions are
those that satisfy certain monotonicity and concavity restrictions.

The purpose of this theory of random consumer demand is application to
empirical consumer demand problems. To this end, the theory has several
desirable features.

1. The representation facilitates inference. Representation theorems iden-
tify theoretically consistent random demand with a regular L-utility
function, and vice versa, so the econometrician can work with regular
L-utility functions directly.

2. The representation is parsimonious: a single function on the consump-
tion set describes not only the response of demand to changes in income
and prices, as a utility function does in standard consumer theory, but
also the distribution of demand on any given budget.

3. The theory is intrinsically stochastic, and so the econometrician can
apply the theory directly without recourse to error terms or random
preferences. In usual practice, distributions of errors and preferences
are given without theoretical justification.

4. The “fit” of an observed choice is measured by the relative desirability
of the choice and its feasible alternatives, rather than by some “dis-
tance” of the choice to the theoretically optimal option. Varian (1990),
in a paper on goodness-of-fit measures, argues for preferring the former
to the latter.

5. Unlike standard consumer theory, the new theory does not rule out
violations of the usual axioms of revealed preference. In practice, such
violations are often observed. The new theory is more forgiving, with-
out being undisciplined.

1The term L-utility is meant to invite intuitive comparison with utility while distin-
guishing it from the usual representation of binary preferences. The L stands for Luce,
whose representation in Luce (1959) is similar to the one described in McCausland (2004a).
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1.1 A Theory of Random Consumer Demand

We briefly describe the theory proposed in McCausland (2004a). We are in a
consumer demand setting with n goods, and the consumption set X is2 Rn

+.
A vector x ∈ X represents a bundle of the n goods, and gives quantities of
each of the n goods.

A consumer is faced with various non-empty finite3 subsets of X called
budgets, and must choose a single bundle from each budget. There is a set B
of all possible budgets, and (X,B) is called the budget space.

The primitive concept is that of a random demand function p, which
assigns to each budget B ∈ B a probability distribution pB on B. Assump-
tions include stochastic analogues of the classical assumptions of transitivity,
monotonicity and convexity. While the classical assumptions apply to bi-
nary preference relations, the assumptions of McCausland (2004a) apply to
binary choice probabilities (i.e. probabilities of choices from doubleton bud-
gets). Luce’s (1959) Choice Axiom relates binary choice probabilities and
random demand on choice sets with more than two elements. We can repre-
sent theoretically consistent random demand functions by L-utility functions
in the set U , defined below, of regular L-utility functions.

Definition 1.1 A function u : X → R is regular if

1. u is non-decreasing, and

2. for all prices w ∈ Rn
++ and all incomes m ∈ Rn

+, u is concave on

B̂(w,m), the classical budget frontier {x ∈ X : w · x = m}.
We denote by U the set of regular functions u : X → R.

A theorem states that for every random demand function p satisfying
the assumptions, there exists a regular L-utility function u, unique up to
the addition of a constant, such that for every budget B and every element
x ∈ B, the probability pB({x}) of choosing bundle x from budget B is given
by

pB({x}) = eu(x)

/∑

y∈B̂

eu(y) , (1)

2R+ is the set of non-negative real numbers
3We may consider finite lattices of points in classical budgets of whatever density we

like, so this is not a serious restriction. Consumers and econometricians only have a
finite set of numbers available to express the quantities of goods they demand or observe.
Furthermore, the currency used in transactions is not infinitely divisible.
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where the budget frontier B̂ of budget B is defined by

B̂ ≡ {x ∈ B : there is no y ∈ B\{x} such that y ≥ x}.

A second theorem states that the representation is complete. For any
L-utility function u ∈ U , there exists a random demand function p satisfying
the assumptions such that for every budget B, and every bundle x ∈ B, the
probability pB({x}) of choosing element x from budget B is given by (1).

We can always make the L-utility function unique by insisting that it take
a particular value at a particular point. The representation theorems thus
establish an identification of any theoretically consistent random demand
function with a regular utility function and vice versa. An econometrician
can work with regular utility functions rather than random demand functions
directly.

In the present paper, we describe Bayesian statistical techniques allowing
an econometrician to use the theory and consumer demand data to learn
about the behavior of real consumers. The econometrician starts with a
prior distribution over L-utility functions, conditions on observed consumer
demand data, and obtains a posterior distribution, which identifies the plau-
sible L-utility functions in the light of the data and prior beliefs. The econo-
metrician can go on to make probabilistic predictions about consumer de-
mand on out-of-sample budgets. These predictions take full account of two
sources of uncertainty: uncertainty about the L-utility function described by
its posterior distribution, and the consumer’s random nature governed by a
L-utility function.

Learning about a multivariate function that is subject to regularity con-
straints such as monotonicity and concavity is a familiar problem. Theory
imposes constraints on production functions, cost functions, utility functions
and indirect utility functions.

There is a large literature on the problem, and the usual approach begins
with two choices. The first choice is that of a parametric class of functions,
representing either the regular function directly, or a derived function such
as a demand function. The second choice consists of constraints on the pa-
rameter, which defines a restricted parameter set. The literature identifies
two important objectives governing these choices, theoretical consistency and
flexibility. To a large extent, they are competing. Theoretical consistency
refers to the extent to which the functions indexed by elements of the re-
stricted parameter set are regular over their domain. If they are regular
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throughout the domain, we have global theoretical consistency. If they are
regular at a point, we have local theoretically consistency. Flexibility refers
to the variety of functions indexed by elements of the restricted parameter
set, and it too may be more or less global, depending on how large is the
subset of the domain where the relevant flexibility properties hold.

The Constant Elasticity of Substitution (CES) class of utility functions,
with non-negativity constraints on its parameters, is globally theoretically
consistent but not very flexible. Popular “flexible functional form” classes
of demand functions include the translog and Almost Ideal Demand System
(AIDS) models. These classes are locally flexible in the sense that with
appropriate choice of their parameters they can achieve arbitrary elasticities
at a given point in their domain. However, they are not globally theoretically
consistent.

There are at least two approaches to approximating regular functions as
finite sums of basis functions spanning the space of continuous functions.
Gallant (1981) uses a Fourier expansion. Barnett and Jonas (1983) and
Geweke and Petrella (2000) use a multivariate Müntz-Szasz expansion. In
theory, these approaches offer flexibility and regularity on an arbitrarily large
compact subset of the consumption set. The practical problem here is one of
estimation. The subset of the parameter space for which the utility function
is regular is small and irregularly shaped. Even the task of ascertaining the
regularity of a particular utility function is difficult.

We also use finite sums of basis functions to approximate regular func-
tions, and our approach is most similar to that of Geweke and Petrella (2000),
in that basis functions are monomials of a transformation of the consumption
set. While they use a power transformation, we use a log transformation.

Section 2 is about the approximation of regular L-utility functions by
elements in a parametric class of L-utility functions. Following Geweke and
Petrella (2000), we apply a result from Evard and Jafari (1994) to show
that any regular L-utility function can be arbitrarily well approximated on
a hyper-rectangle X̄ by a L-utility function in our parametric class that is
regular on X̄.

In Section 3, we discuss prior distributions over our parametric class of
L-utility functions. We show that these priors are proper, which is essential
for Bayesian model comparison using Bayes factors. We also show that they
are flexible, in the sense that they put positive prior probability in the neigh-
borhood of any L-utility function that is regular on X̄; and regular, in the
sense that they assign zero probability to the set of L-utility functions that
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are irregular on X̄.
In Section 4, we discuss a demand environment with indivisible goods.

The case of infinitely divisble goods is more difficult and is addressed in
another paper. We obtain data distributions for quantities demanded given
observed prices and income and unobserved L-utility parameters.

In Section 5, we present an empirical application of our theory and econo-
metric methods. We analyse individual choice data from a consumer exper-
iment described in Harbaugh et al. (2001).

We conclude in Section 6.

2 A Parametric Class of L-Utility Functions

Our immediate objective is Bayesian learning, from consumer demand data,
about plausible L-utility functions. For this, we require a prior distribution
over L-utility functions. Together with data distributions describing ran-
dom consumer demand given budgets and a L-utility function, we obtain a
posterior distribution over L-utility functions.

We propose a flexible infinite-dimensional parametric class of L-utility
functions. We will express prior and posterior uncertainty about L-utility
functions using probability distributions over the parameter set.

Ideally, we would like our prior over L-utility functions to assign positive
probability to any ‖ · ‖X∞-neighborhood4 of any regular L-utility function,
and zero probability to the set of irregular L-utility functions. This would
require a parametric class containing functions in every ‖·‖X∞-neighborhood of
every regular L-utility function. We settle for a parametric class containing
functions in every ‖ · ‖X̄∞-neighborhood of every regular L-utility function,
where X̄ is a restricted consumption set, defined below:

Definition 2.1 A set X̄ ⊆ X is a restricted consumption set if there exist
positive x̄1, . . . , x̄n such that

X̄ = [0, x̄1]× . . .× [0, x̄n].

We condition on prices and income, so we can choose x̄ ≡ (x̄1, . . . , x̄n)
as a function of them. In particular, we can choose x̄i > maxtmt/wit for all
i ∈ {1, . . . , n} to ensure that all feasible bundles lie in X̄.

For all x ∈ Rn and all multi-indices5 ι ∈ N n, define xι ≡∏n
i=1 x

ιi
i . Multi-

4For any set A, and any function f : A→ R, we define ‖f‖A∞ ≡ supx∈A |f(x)|.
5N ≡ {0, 1, . . . ,∞}
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variate generalizations of the Stone-Weierstrass theorem tell us that the set
{xι : ι ∈ N n} of monomials in x spans the space of continuous functions on
the compact set X̄. Unfortunately, these monomials do not resemble regular
L-utility functions: with positive coefficients, they are convex on classical
budget frontiers and with negative coefficients, they are non-increasing. We
instead consider the set of monomials {[φ(x)]ι : ι ∈ N n}, where φ is the
following transformation.

We suppose x̄ is fixed. Let ξ ∈ Rn
++ and x∗ ∈ Rn such that 0 < x∗ < x̄

and define φ : X → Rn as

φ(x) =

(
log

(
x1 + ξ1

x∗1 + ξ1

)
, . . . , log

(
xn + ξn
x∗n + ξn

))
∀x ∈ X. (2)

Vectors ξ and x∗ are fixed constants that the econometrician choses in
advance for computational convenience. They may depend on prices and
income, which give useful information about quantity scales, but they do not
vary from one L-utility function to another.

The set of monomials in φ(x) has some useful properties.

1. The positivity of ξ ensures that φ(X̄) is compact, φ is invertible on
X̄, and φ−1 is uniformly bounded and continuous on φ(X̄). All are
required for our approximation result.

2. It includes, for all i ∈ {1, . . . , n}, the regular L-utility function log((xi+
ξi)/(x

∗
i + ξi)).

3. For small values of ξi, linear combinations
∑n

i=1 λi log((xi+ξi)/(x
∗
i +ξi))

of these regular functions approximate Cobb-Douglas L-utility func-
tions of arbitrary “expenditure shares” λi/

∑n
j=1 λj. Higher order mono-

mials in φ(x) allow changes in “expenditure shares” with prices and
income.

4. The constant x∗ establishes a reference value around which the mono-
mials of first and second order are nearly “orthogonal”.

We approximate L-utility functions as polynomials in φ(x). We will fix
the order {ι(k)}∞k=1 of multi-indices ι(k) ∈ N n, establishing an order for the
monomials in φ(x). The parameter set is the union L =

⋃∞
K=1RK of different

dimensional subsets. An element λ ≡ (λ1, . . . , λK) ∈ L gives the coefficients
of the first K monomials.
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Definition 2.2 Define the function u : X × L→ R by

u(x;λ) ≡
K∑

k=1

λk[φ(x)]ι
(k)

=

K∑

k=1

λk

n∏

i=1

[
log

(
xi + ξi
x∗i + ξi

)]ι(k)
i

∀x ∈ X, ∀λ ∈ L,

where K is the length of λ.

The unknown parameters are the number of terms K and the coefficients
(λ1, . . . , λK).

We now identify some important subsets of the parameter set L. One is
the subset whose elements index the regular L-utility functions.

Definition 2.3 For every K ∈ {1, . . . ,∞}, define ΛK ≡ {λ ∈ RK : u(·, λ) ∈
U}, and Λ ≡ ⋃∞K=1 ΛK.

For every restricted consumption set X̄, we define the set UX̄ as the set of
L-utility functions that are regular6 on X̄ and ΛX̄ as the subset of parameters
indexing L-utility functions that are regular on X̄.

Definition 2.4 For every K and every restricted consumption set X̄, define
ΛK
X̄
≡ {λ ∈ RK : u(·, λ) ∈ UX̄} and ΛX̄ ≡

⋃∞
K=1 ΛK

X̄
.

Note that for every restricted consumption set X̄ and every K ∈ {1, . . . ,∞},
U ⊂ UX̄ , ΛK ⊂ ΛK

X̄
⊂ RK and Λ ⊂ ΛX̄ ⊂ L.

2.1 Results

We now present two intermediate results used in Section 3. The following
result is also interesting in itself, since the convexity of the parameter subsets
ΛK
X̄

is convenient for posterior simulation.

Result 2.1 For every K ∈ {1, . . . ,∞} and every restricted consumption set
X̄, ΛK and ΛK

X̄
are convex cones.

6For every restricted consumption set X̄, the function u : X → R is regular on X̄ if it
is non-decreasing on X̄, and for all prices w ∈ Rn++ and all incomes m ∈ Rn+, it is concave

on B̂(w,m)∩X̄. Recall the definition of the classical budget frontier B̂(w,m) in Definition
1.1.
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Proof. U and UX̄ are closed under addition and positive scalar multipli-
cation. Therefore ΛK and ΛK

X̄
are convex cones. �

The following approximation result tells us that for any restricted con-
sumption set X̄, we can approximate any twice continuously differentiable
function arbitrarily closely on X̄ by a L-utility function in our parametric
class. Significantly, we can take the approximating L-utility function to be
regular on X̄.

The result is similar to a result in Geweke and Petrella (2000). Differences
arise because their notion of regularity and their transformation (analogous
to φ, defined by equation 2) are different. Those authors recognized the
significance of a result by Evard and Jafari (1994) on the simultaneous ap-
proximation of a function and its derivatives for guaranteeing the regularity
of the approximating function.

Result 2.2 (Approximation) For every restricted consumption set X̄, ev-
ery twice continuously differentiable u ∈ U , and every ε > 0, there exists a
λ ∈ ΛX̄ such that

‖u(·;λ)− u(·)‖X̄∞ < ε. (3)

Proof. Choose restricted consumption set X̄, twice continuously differen-
tiable L-utility function u ∈ U , and ε > 0.

We first define a function û : X̄ → R, close to u and more convenient
to approximate, due to its strict monotonicity and its strict concavity on
classical budget frontiers. We will approximate û, and show that the approx-
imation of û is sufficiently close to u.

û(x) ≡ u(x) +
ε

2

n∏

i=1

(
xi
x̄i

)1/2

∀x ∈ X̄.

Since u is non-decreasing on X̄, concave on all classical budget frontiers, and
twice continuously differentiable on X̄, û is increasing on X̄, strictly concave
on all classical budget frontiers, and twice continuously differentiable on X̄.
Also,

‖û(·)− u(·)‖X̄∞ =
ε

2
. (4)

A direct corollary of Corollary 3 of Evard and Jafari (1994) is that for
every twice continuously differentiable function f : X̄ → R, and every ε′ > 0,
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there exists a polynomial p : X̄ → R such that for all i, j ∈ {1, . . . , n} and
all x ∈ X̄,

|f(x)− p(x)| < ε′,

∣∣∣∣
∂f

∂xi
− ∂p

∂xi

∣∣∣∣ < ε′, and

∣∣∣∣
∂2f

∂xi∂xj
− ∂2p

∂xi∂xj

∣∣∣∣ < ε′.

The transformation function φ (defined in (2)) has an inverse φ−1 which
is twice continuously differentiable on φ(X̄). Therefore û ◦ φ−1 is also twice
continuously differentiable on φ(X̄). Furthermore, φ(X̄) is compact.

The corollary implies that for all ε′ > 0, there exists a λ ∈ L such that
for all i, j ∈ {1, . . . , n} and all z ∈ φ(X̄),

∣∣∣∣∣
K∑

k=1

λkz
ι(k) − (û ◦ φ−1)(z)

∣∣∣∣∣ < ε′,

∣∣∣∣∣
∂

∂zi

K∑

k=1

λkz
ι(k) − ∂

∂zi
(û ◦ φ−1)(z)

∣∣∣∣∣ < ε′

and ∣∣∣∣∣
∂2

∂zi∂zj

K∑

k=1

λkz
ι(k) − ∂2

∂zi∂zj
(û ◦ φ−1)(z)

∣∣∣∣∣ < ε′,

where K is the length of λ.
The function φ maps X̄ to φ(X̄), and therefore for all i, j ∈ {1, . . . , n}

and all x ∈ X̄,
∣∣∣∣∣
K∑

k=1

λk[φ(x)]ι
(k) − û(x)

∣∣∣∣∣ = |u(x;λ)− û(x)| < ε′,

∣∣∣∣
∂

∂xi
u(x;λ)− ∂

∂xi
û(x)

∣∣∣∣ < ε′M1

and ∣∣∣∣
∂2

∂xi∂xj
u(x;λ)− ∂2

∂xi∂xj
û(x)

∣∣∣∣ < ε′M2,

where M1 and M2, derived from uniform bounds on the derivatives of φ on
X̄, do not depend on x.

We can choose ε′ such that for all x ∈ X̄,

|u(x;λ)− û(x)| < ε

2
, (5)
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∂u(x;λ)

∂x
> 0, (6)

and

v′
∂2u(x;λ)

∂x∂x′
v < 0 ∀v ∈ Rn\Rn

+. (7)

Equations 4 and 5 and the triangle inequality guarantee that (3) holds. Equa-
tions 6 and 7 guarantee that λ ∈ ΛX̄ . �

3 A Class of Priors over L-Utility Functions

We describe here a class of prior densities f(K,λ) over the unknown param-
eters K and λ of the unobserved L-utility function. Each prior f(K,λ) has
the following desirable features.

• For each K, the conditional prior density f(λ|K) is proper and can
be evaluated to within a multiplicative normalization constant. This
facilitates posterior simulation conditional on K and observed data y,
and the approximation of partially marginalized7 likelihoods f(y|K),
for various values of K. We can use the f(y|K) to approximate the
posterior probabilities f(K|y) and to do model averaging over K. We
can also approximate the fully marginalized likelihood f(y), which we
can use to compare the unconditional (on K) model with competing
models.

• The prior is flexible, in the sense that it assigns positive probability to
the ‖ · ‖X̄∞-neighborhood of every regular L-utility function

• The prior is regular, in the sense that it assigns zero probability to the
set of L-utility functions that are not regular on X̄.

Another feature of f(K,λ), which is not unambiguously desirable since it
is restrictive, is a scale invariance property. In the next section, we express
an L-utility function as the product of normalized L-utility function and a
multiplicative constant. The scale invariance property is the a priori inde-
pendance of the normalized function and the multiplicative constant. This
independance is computationally convenient and facilitates prior elicitation.

7The likelihood has been marginalized with respect to λ, but not K.

11



We show two results. The first is relevant to the propriety of the priors.
The other, building on the approximation result (Result 2.2) of Section 2,
establishes flexibility.

3.1 A Class of Priors

Recall that the regular parameter set is ΛX̄ =
⋃∞
K=1 ΛK

X̄
, and that (Result

2.1) for all K, ΛK
X̄

is a convex cone. Otherwise ΛX̄ is a highly irregular set
and presents a challenge for prior elicitation.

We consider prior distributions on ΛX̄ with densities f that can be ex-
pressed as

f(λ) = f0(u(x̄;λ))
∞∑

K=1

πKfK(λ|u(x̄;λ)),

where

• x̄ ≡ (x̄1, . . . , x̄n) is the far corner of the restricted consumption set
X̄ = [0, x̄1]× . . .× [0, x̄n].

• f0(·) is any proper density with support R+. It gives the distribution
of u(x̄;λ), the value of L-utility at x̄.

• {πK}∞K=1 is sequence of real scalars, with
∑∞

K=κ πK ≥ 0 for all κ ∈
{1, . . . ,∞}, and

∑∞
K=1 πK = 1. For each K, πK gives the prior proba-

bility that the number of basis functions is K.

• For each K such that πK > 0, fK(λ|ū) is a density satisfying the
following conditions:

– Its support is the set valued function ΛK
X̄

(ū) given by

ΛK
X̄(ū) ≡ {λ ∈ ΛK

X̄ : u(x̄, λ) = ū} ∀ū ∈ R+,

the set of all λ vectors of length K such that u(·;λ) is regular on
the restricted consumption set X̄ and u(x̄;λ) = ū.

– The following scale invariance property holds:

fK (λ|ū) = ū−(K−1)fK

(
λ

ū
|1
)
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The density fK(λ|1) gives (indirectly) the conditional distribution of
the normalized L-utility function u(·;λ)/u(x̄;λ) given K.

A key restriction is the scale invariance property, and it implies that the L-
utility level u(x̄;λ) at x̄ and the normalized L-utility function u(·;λ)/u(x̄;λ)
are independent.

The normalized L-utility u(·;λ)/u(x̄;λ) contains information about the
location of modes of choice distributions, and how they respond to changes in
prices and income. A natural strategy for eliciting a prior over the normalized
L-utility is to put a prior over economically relevant quantities such as the
direction of the gradient at various points in the restricted consumption set,
thereby inducing an implicit prior over λ. In this way, one can elicit a prior
without knowing the details of the L-utility parameterization.

For a given value of the normalized L-utility function, the value u(x̄;λ)
can be interpreted as governing the degree of rationality of the consumer.
As it approaches infinity, all choice distributions concentrate on choices that
maximise the normalized L-utility. At zero, all choice distributions are uni-
form over the choices on the budget frontier.

It is easy to ensure that the prior is proper. The first result of the next
section is that for every K, the volume of the support ΛK

X̄
(1) of fK(·|1) is

finite. By choosing a bounded positive function for fK(·|1), we can ensure
that it is finitely integrable on ΛK

X̄
and thus that f(λ|K) is proper.

It is not necessary to know the normalization factor of fK(·|ū) to be
able to do posterior simulation by Markov Chain Monte Carlo (MCMC). Its
dependence on ū has a known form, thanks to the scale independence condi-
tion. Its dependence on K is unknown in general, but this is not serious. For
various values of K, we can do posterior simulation conditional on K and
approximate the partially marginalized likelihood f(y|K) using the methods
of Gelfand and Dey (1994) or Meng and Wong (1996), which does not re-
quire the normalization constant for f(λ|K). From there, we can go on to
approximate posterior probabilities of various values of K.

The second result of the next section shows that for suitable choice of
the sequence {πK}, the prior is flexible, in the sense that it puts positive
probability in the ‖ · ‖X̄∞-neighborhood of every regular L-utility function.
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3.2 Results

We prove two results. The first result is that for every K the volume8

Vol[ΛK
X̄

(1)] is finite. The second result shows that for a suitable choice of
{πK}∞K=1, each of the priors in our class puts positive probability in the
‖ · ‖X̄∞-neighborhood of every regular L-utility function.

Result 3.1 For every K > 0, Vol[ΛK
X̄

(1)] is finite.

Proof. Let K be an arbitrary positive integer. We first establish bounds on
the values of L-utility on the subset [x∗1, x̄1]× . . .× [x∗n, x̄n] of the restricted
consumption set.

Claim 3.1 For every x ∈ [x∗1, x̄1]× . . .× [x∗n, x̄n] and every λ ∈ ΛK
X̄

(1),

0 ≤ u(x;λ) ≤ 1

Proof. The claim follows directly from the monotonicity of u(·;λ), the fact
that u(x∗;λ) = 0, and the fact that u(x̄;λ) = 1. �

To bound the volume of ΛK
X̄

(1), we first establish the non-singularity of
a certain matrix. Once we do this, we can derive an expression for a bound
in which the inverse of the matrix appears. First we define some important
quantities.

Choose scalars q1, . . . , qn such that for every i ∈ {1, . . . , n},

1. There exists positive integers mn and md such that qi = pmn2i /p
md
2i−1,

where pi is the i’th prime number, and

2.
[
log
(

(x∗i+x̄i)/2+ξi
x∗i+ξi

)/
log
(
x̄i+ξi
x∗i+ξi

)]1/K

≤ qi ≤ 1.

A simple modification of the proof in Rudin (1976) of the denseness of the
rational numbers in the reals shows that we can do this. Note that the
inequalities x∗i < (x∗i + x̄i)/2 < x̄i ensure that we are taking the K’th root of
a positive real number strictly less than one.

Now define, for all k ∈ {1, . . . , K},

zk ≡
(
qk1 log

(
x̄1 + ξ1

x∗i + ξ1

)
, . . . , qkn log

(
x̄n + ξn
x∗i + ξn

))
, xk ≡ φ−1(zk),

8We use the notation Vol to denote the volume of a set under Lesbesgue measure.
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and

C ≡



zι

(1)

1 · · · zι
(K)

1
...

. . .
...

zι
(1)

K · · · zι
(K)

K


 .

Note that for all λ ∈ ΛK
X̄

,

Cλ = [u(x1;λ), . . . , u(xK ;λ)]′ = [u(φ−1(z1);λ), . . . , u(φ−1(zK);λ)]′,

and that for all k ∈ {1, . . . , K}, xk = φ−1(zk) ∈ [x∗1, x̄1]× . . .× [x∗n, x̄n]. Claim
3.1 gives us (0, . . . , 0)′ ≤ Cλ ≤ (1, . . . , 1)′.

We now show that C is non-singular.

Claim 3.2 C is non-singular.

Proof. C can be written as



(qι
(1)

)1[φ(x̄)]ι
(1) · · · (qι

(K)
)1[φ(x̄)]ι

(K)

...
. . .

...

(qι
(1)

)K [φ(x̄)]ι
(1) · · · (qι

(K)
)K [φ(x̄)]ι

(K)




=




(qι
(1)

)1 · · · (qι
(K)

)1

...
. . .

...

(qι
(1)

)K · · · (qι
(K)

)K


 · diag

(
[φ(x̄)]ι

(1)

, . . . , [φ(x̄)]ι
(K)
)

We will show that both these factors are non-singular, which will then
imply that C is non-singular. The first factor is a Vandermonde matrix,
and to establish its non-singularity, it suffices to show that for all k, l ∈
{1, . . . , K}, k 6= l ⇒ qι

(k) 6= qι
(l)

. This follows from the fact that there is
a unique representation of any rational number as the ratio of two integers
with no common factors, and unique prime factorizations of the two integers.
The second factor is a diagonal matrix whose elements are non-zero, and so
it is also non-singular. Since the two factors are non-singular, so is C. �

We now construct the matrix C̃ whose inverse is a factor of the bound on
Vol[ΛK

X̄
(1)], and show that it is non-singular. Let

c =
(

[φ(x̄)]ι
(1)

, . . . , [φ(x̄)]ι
(K)
)

and note that cλ =
∑K

k=1 λk[φ(x̄)]ι
(k)

= u(x̄, λ). Now construct the matrix C̃
by replacing one row of C with c. We take care to choose a row such that c
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is not in the subspace spanned by the remaining rows. Let κ be the index of
the row replaced by c. Since C is non-singular, C̃ is also non-singular.

We now show that ΛK
X̄

(1) is a subset of a set whose larger volume we can
bound above.

Claim 3.3

ΛK
X̄(1) ⊆

{
λ ∈ RK : (. . . , 0, 1, 0, . . .)′ ≤ C̃λ ≤ (1, . . . , 1)′

}
,

where the 1 appears at the κ’th place of the vector on the left.

Proof. Let λ ∈ ΛK
X̄

(1). Then (C̃λ)κ = 1. By the construction of the zk,

xk = φ−1(zk) ∈ [x∗1, x̄1]× . . .× [x∗n, x̄n] ∀k ∈ {1, . . . , K}.

By Claim 3.1, 0 ≤ u(xk;λ) ≤ 1 for all k ∈ {1, . . . , K}, and so 0 ≤ Cλ ≤
(1, . . . , 1). Therefore

(. . . , 0, 1, 0, . . .)′ ≤ C̃λ ≤ (1, . . . , 1)′. �

Now, by Claim 3.3,

Vol
[
ΛK
X̄(1)

]
≤ Vol

[
{λ ∈ RK : (. . . , 0, 1, 0, . . .)′ ≤ C̃λ ≤ (1, . . . , 1)′

]

=
∣∣∣C̃
∣∣∣
−1

. �

The second result builds on Result 2.2 on the approximation of L-utility
functions to show that the prior is flexible and regular.

Result 3.2 For all twice continuously differentiable and concave u ∈ U ,
and all priors in the class described in this section, the prior assigns positive
probability to any ‖ · ‖X̄∞-neighborhood of u, and zero probability to the set of
L-utility functions that are not regular on X̄.

Proof. Let u ∈ U be twice continuously differentiable and concave, and
let ε > 0. By Result 2.2, we can find a K ∈ {1, . . . ,∞} and a λ∗ ∈ ΛK

X̄
such

that ‖u(x;λ∗) − u(x)‖X̄∞ < ε/2. The prior, strictly positive on ΛK
X̄

, assigns
positive probability to the set

Λ∗ =

{
λ ∈ ΛK

X̄ : |λ∗k − λk| <
ε

4K

(
sup
x∈X̄

∣∣∣φ(x)ι
(k)
∣∣∣
)−1

∀k ∈ {1, . . . , K}
}
.
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Table 1: Observed Variables
Variable Description

wit price of good i at time t

xit quantity demanded of good i at time t

mt income at time t

wt ≡ (w1t, w2t, . . . , wnt)
′ time t price vector

xt ≡ (x1t, x2t, . . . , xnt)
′ time t quantity vector

WT ≡
[
w1 w2 . . . wT

]
price matrix

XT ≡
[
x1 x2 . . . xT

]
quantity matrix

MT ≡
[
m1 m2 . . . mT

]
income vector

For all λ ∈ Λ∗, ‖u(·;λ)− u(·;λ∗)‖X̄∞ < ε
2
, and therefore ‖u(·;λ)− u(·)‖X̄∞ < ε.

Since
∑∞

k=K πk > 0, the prior assigns positive probability to Λ∗, and therefore
a positive probability to the ‖ · ‖X̄∞-neighborhood of u. The fact that the
prior assigns zero probability to the set of functions that are not regular on
X̄ follows trivially from the fact that the support of the prior is ΛX̄ . �

4 Demand Environment

We have a theory of random consumer choices from arbitrary finite subsets of
the consumption set. In the usual consumer demand environment, we do not
observe budgets directly, but rather prices and income, which then determine
budgets. We describe a consumer demand environments with indivisible
goods. We give a mapping from prices and income to finite budgets, data
distributions on the budgets for a given L-utility function, and the likelihood
function for a given data set.

We observe a consumer making demand decisions at times t = 1, . . . , T ,
and assume that quantity observations are independent. Table 1 lists the
variables we observe, and their notation.
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4.1 Indivisible Goods Budgets

The choice environment is useful for the analysis of certain consumer exper-
iments, for example those in Sippel (1997), Mattei (2000), and Harbaugh et
al. (2001). Goods are indivisible, and feasible budgets typically have a small
number of the indivisible unit of each good. Without loss of generality, we
can assign to unity the quantity of a single indivisible unit of each good.

The non-negative income m and positive price vector w are otherwise
unrestricted. The mapping BIG from income and prices to budgets is given
by

BIG(w,m) ≡ {x ∈ X : w · x ≤ m and x ∈ N n}
Given a L-utility function u(·, λ) indexed by some λ ∈ ΛX̄ , and values w

and m of prices and income, the probability mass function governing choices
on the budget BIG(w,m) is given by

f(x|λ,w,m) =

{
eu(x;λ)

/∑
y∈B̂IG(w,m) e

u(y;λ) x ∈ B̂IG(w,m)

0 x /∈ B̂IG(w,m)
,

and the likelihood function for a given data set XT , WT and MT is given by

L(λ;XT ,WT ,MT ) =
T∏

t=1


eu(xt;λ)

/ ∑

B̂(wt,mt)

eu(x;λ) dx


 .

The log-likelihood function for the data set is given by

L(λ;XT ,WT ,MT ) =
T∑

t=1


u(xt;λ)− log

∑

B̂(wt,mt)

eu(x;λ) dx


 .

When we come to Markov Chain Monte Carlo simulation of the posterior
distribution, the following result is reassuring.

Result 4.1 (Log-Concavity of Likelihood Functions) For every K ∈
{1, . . . ,∞}, every restricted consumption set X̄, every allowable data set
(XT ,WT ,MT ) for the indivisible good case the log-likelihood L is concave on
ΛK
X̄

.
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Proof. Let K ∈ {1, . . . ,∞}, restricted consumption set X̄, and data set
(XT ,WT ,MT ) be arbitrary. We will show that for every t ∈ {1, . . . , T}, the
t’th term of the log-likelihood L is concave. Then the log-likelihood L, a sum
of these terms, is also concave.

Let t ∈ {1, . . . , T} be arbitrary. The t’th term of the log-likelihood is

u(xt;λ)− log
∑

x∈B̂(wt,mt)

eu(x;λ) dx. (8)

Since u(xt;λ) is a linear function of λ on ΛK
X̄

, it is concave there. We now
show that the log term of (8) is convex. Its gradient is given by9

∂

∂λ
log

∑

xt∈B̂(wt,mt)

eu(x;λ) dx =

∑
xt∈B̂(wt,mt)

eu(x;λ) ∂u(x;λ)
∂λ

dx
∑

xt∈B̂(wt,mt)
eu(x;λ) dx

= E

[
∂u(xt;λ)

∂λ

∣∣∣∣λ
]
,

and its Hessian is given by

∂2

∂λ∂λ′
log

∑

x∈B̂(wt,mt)

eu(x;λ) dx

=

∑
xt∈B̂(wt,mt)

eu(x;λ)
(
∂u(x;λ)
∂λ

∂u(x;λ)
∂λ′ + ∂2u(x;λ)

∂λ∂λ′

)
dx

∑
x∈B̂(wt,mt)

eu(x;λ) dx

−

(∑
xt∈B̂(wt,mt)

eu(x;λ) ∂u(x;λ)
∂λ

dx
)(∑

xt∈B̂(wt,mt)
eu(x;λ) ∂u(x;λ)

∂λ′ dx
)

[∑
xt∈B̂(wt,mt)

eu(x;λ) dx
]2

= E

[
∂u(xt;λ)

∂λ

∂u(xt;λ)

∂λ′

∣∣∣∣λ
]
− E

[
∂u(xt;λ)

∂λ

∣∣∣∣λ
]
· E
[
∂u(xt;λ)

∂λ′

∣∣∣∣λ
]

= Var

[
∂u(xt;λ)

∂λ

∣∣∣∣λ
]

We use the fact that the Hessian of u with respect to λ is identically equal
to zero. The final right hand side expression is positive semidefinite, and so
the log term of (8) is convex. �

9E[·|λ] and Var[·|λ] are the expectation and variance operators, respectively, for the
conditional distribution of xt given λ.
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5 An Empirical Application

The theory of consumer demand in McCausland (2004a) concerns individual,
rather than aggregate choice behavior. In this paper, we focus on indivisible
goods and assume choices on different budgets are independent. In addition,
posterior simulation is computationally practical only for a small number n
of goods.

For these reasons, consumer demand experiments like those described
in Harbaugh (2001), Mattei (2000), and Sippel (1997) are ideal as a first
application of the theory and econometric techniques. These experiments
share the following features.

1. Consumers select bundles from several different budgets, in the knowl-
edge that after all decisions are made, exactly one of the budgets will
be selected at random, and the consumer will be given their choice from
(only) that budget. We can thus plausibly consider choices as being
simultaneous or static, rather than dynamic.

2. Goods are consumed on the spot, shortly after choices have been made.

3. Consumers have the opportunity to go back and change earlier choices,
before a budget is selected at random. This mitigates criticism that
learning during the experiment is a problem.

4. Choices are reliably recorded. We can be fairly confident that measure-
ment error is not a problem.

5. The number of goods, the nature of the indivisibilities, and prices and
income are such that the number of possible choices is computationally
tractible.

In this paper, we analyze data from the Harbaugh et al. (2001) “GARP
for Kids” experiment, undertaken in a study of the development of rational
behavior. Subjects are 31 second grade students, 42 sixth grade students
and 55 undergraudates. There are two good, chips and juice, in indivisible
packages. There are no prices and income as such: subjects are offered a
budget of choices directly, and the budgets do not include off-frontier bundles.
Figure 1 illustrates the eleven different budgets.

20



0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Boxes of Juice

B
ag

s 
of

 C
hi

ps

Figure 1: Budgets for the “GARP for Kids” experiment.
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5.1 Choice of Constants and Prior

We choose the constants defining the restricted consumption set X̄ and the
transformation φ as x̄ = (10, 10), x∗ = (1.0, 1.0), and ξ = (0.1, 0.1). Thus
X̄ = [0, 10]2, which contains all eleven budgets, and the tranformation φ is
given by

φ(x1, x2) =

(
log

(
x1 + ξ1

x∗1 + ξ1

)
, log

(
x2 + ξ2

x∗2 + ξ2

))

=

(
log

(
x1 + 0.1

1.1

)
, log

(
x2 + 0.1

1.1

))
.

We order the multi-indices {ι(k)}∞k=1 as (1, 0), (0, 1), (2, 0), (1, 1), (0, 2),
(3, 0), (2, 1), . . . and thus the basis functions are ordered φ1, φ2, φ2

1, φ1φ2, φ2
2,

φ3
1, φ2

1φ2, . . ..
The prior on K, the number of basis functions, puts positive prior prob-

ability (only) on values of K for which the first K basis functions are those

having sums of exponents ι
(k)
1 +ι

(k)
2 up to some integral order. For p = 1, 2, . . .,

we set π(p+1)(p+2)/2−1 = 2−p. Thus π2 = 1/2, π5 = 1/4, π9 = 1/8, etc.
We choose a gamma prior for u(x̄;λ), with shape parameter α = 2 and

inverse scale parameter β = 0.05. For each K with πK > 0, we choose a flat
prior for fK(λ|u(x̄;λ) on ΛK

X̄
(x̄;λ)).

5.2 Simulation

For a given value ofK, we simulate finite sequences from two ergodic Metropolis-
Hastings Markov chains. The respective stationary distributions are the prior
distribution λ|K and the posterior distribution λ|K,XT ,WT ,MT .

For both Metropolis-Hastings chains, the proposal distribution is a mul-
tivariate normal distribution with mean equal to the current value of λ. For
prior simulation, the proposal precision (inverse of variance) is a weighted
sum of the Hessian of the log prior and a matrix G designed to capture the
shape of ΛX̄ . For posterior simulation, the proposal precision is a weighted
sum of the same two matrices and the Hessian of the likelihood. The matrix
G and the weights are tuned to improve the performance of the chains. Recall
that for each K, the set ΛK

X̄
is convex and that the restriction of the likelihood

to it is log-concave. Both are very convenient for posterior simulation.
We approximate partially marginalized likelihoods using the method of

Meng and Wong (1996). For several values of K, we draw a sample of
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Table 2: Log Marginal Likelihoods for Subjects in “GARP for Kids” Exper-
iment

-7.23 -4.99 -9.42 -4.14 -4.05
-14.56 -9.51 -14.84 -8.13 -15.67
-17.20 -4.15 -17.31 -12.14 -24.99
-20.18 -24.55 -21.18 -4.03 -7.20
-9.42 -4.07 -17.16 -7.18 -8.54

-10.36 -12.92 -4.08 -4.09 -8.98
-11.51 -22.91 -11.76 -12.75 -17.44
-7.16 -11.57 -15.83 -17.19 -4.12
-9.94 -9.83 -22.27 -7.76 -15.15

-19.81 -15.11 -17.62 -10.59 -23.20
-22.69 -4.02 -16.49 -7.21 -20.02

values from the distributions λ|K and λ|K,XT ,WT ,MT . For each draw
of both samples, we evaluate an unnormalized density for the distribution
λ|K and the likelihood L(λ;XT ,WT ,MT ). The product is an evaluation of
an unnormalized density for the distribution λ|K,XT ,WT ,MT . The Meng
and Wong method gives the ratio of the constants which normalize the two
unnormalized densities, which is equal to the value f(XT ,WT ,MT |K) of the
partially marginalized likelihood.

5.3 Results

Table 2 shows results for the “GARP for Kids” experiment. The objective
here is not to study the development of rational behavior in children, and so
we report results only for the benchmark undergraduate subjects. We report
the log marginal likelihood for each subject. Here, the marginal likelihood is
the marginal probability that the theory assigns to the sequence of observed
choices that a subject makes, for the chosen prior. Standard errors for the
numerical approximation of the log marginal likelihoods reported in Table 2
are all less than 0.05. The average log marginal likelihood is −12.48.

To put these quantities in perspective, we consider the average log marginal
likelihood arising from various models. The model assigning equal probability
to all possible sequences of eleven choices implies a log marginal likelihood
of −16.31 for every subject. A model which correctly and with certainty
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Table 3: Counts of Numbers of GARP Violations
Number of violations Experimental subjects All sequences

0 36 108,846
1 0 0
2 1 140,788
3 5 171,718
4 0 272,978
5 7 438,074
6 1 646,288
7 0 928,790
8 0 1,567,246
9 2 2,081,452

10 1 2,555,030
11 2 3,184,790

Total 55 12,096,000

predicts the behavior of all subjects on all budgets implies a log marginal
likelihood of zero for every subject. Any model that assigns probability zero
to every sequence featuring at least one violation of the Generalized Axiom
of Revealed Preference (GARP) gives a log marginal likelihood of negative
infinity to the sequences of the 19 out of 55 subjects who violated the GARP,
and therefore an average log marginal likelihood of negative infinity.

We use the data in Table 3 to derive a maximum possible log marginal
likelihood of −13.36 for any model assigning equal probabilities to all se-
quences featuring the same number of violations of the GARP. The second
column gives, for the number of GARP violations in the first column, the
number of subjects having that number of violations. The third column gives
the total number of distinct sequences of eleven choices having that number
of violations.

6 Conclusions

We have shown how to do Bayesian Analysis for the theory of random con-
sumer demand in McCausland (2004a). Approximation of utility functions
is quite flexible, and so the econometric analysis does not add any serious
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additional restrictions to random consumer demand that are not theoreti-
cally motivated. We provide a class of priors that is proper, practical for the
purposes of posterior simulation, and allowing indirect elicitation through
priors on economically relevant quantities. We show how to construct a like-
lihood function for a consumer environment with indivisible goods, deferring
the case of infinitely divisible goods to another paper. We have applied the
theory of McCausland (2004a) and the econometric techniques of this paper
to the analysis of data from a consumer experiment.
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