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We specify and solve a closed-loop dominant firm nonrenewable resource game,

with a price-taking fringe. We show that (i) the outcomes of the closed-loop

and the open-loop dominant firm nonrenewable resource game (à la Salant 1976)

coincide and (ii) when the number of fringe firms becomes arbitrarily large, the

equilibrium outcome of the closed-loop oligopoly game does not coincide with

the equilibrium outcome of the closed-loop dominant firm nonrenewable resource

game. Thus, the interpretation of the dominant firm model, where the fringe

is assumed from the outset to be price-taker, as a limit case of an asymmetric

oligopoly where the number of fringe firms tends to inifinity, does not extend to
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1 Introduction

The cartel-fringe model, also called the dominant firm model, of the oil market describes

the pricing of oil in a situation where supply comes from a coherent cartel and a large

group of fringe members. The model was introduced by Salant (1976), who considered

the case of zero extraction costs and a continuum of price taking fringe members. He em-

ployed the open-loop Nash equilibrium (OLNE) as the equilibrium concept. The model

was later analyzed by Ulph and Folie (1980), again with a continuum of fringe members

and the OLNE equilibrium concept, but for positive constant marginal extraction costs,

possibly differing between the cartel and the fringe. The cartel takes as given the pro-

duction path of the fringe and chooses a price path whereas the fringe firms are price

takers and determine their production paths. The cartel and the fringe simultaneously

choose their respective strategy. Because each firm’s strategy is in the form of a path we

call this game the open-loop dominant firm nonrenewable resource game. An important

contribution of Salant (1976) is to provide microfoundations of this model by showing

that it is a limiting case of an asymmetric oligopoly model where fringe firms don’t act as

price takers. More precisely, consider the asymmetric oligopoly game with one dominant

firm (e.g., with a low cost of extraction and/or larger reserves) and a finite number of

fringe firms who compete à la Cournot in the natural resource market. Salant (1976)

shows that when the number of fringe firms becomes arbitrarily large the equilibrium

outcome of the open-loop game coincides with the equilibrium outcome of the open-loop

dominant-firm nonrenewable resource game.

Open-loop strategies are acceptable in environments where firms can commit over

the whole time horizon to a production path or a price path, for instance under the

assumption of a perfect futures’ market. However, this may not be an acceptable way

to model firms’ strategies in environments where firms have information about stocks at

future dates and have the flexibility to change their course of actions during the game:

the equilibrium obtained with open-loop strategies may not be subgame perfect. In the

latter case, we consider the set of closed-loop strategies where a firm chooses states’ (i.e.,

stocks) dependent strategies.

In this paper we specify and solve a closed-loop dominant firm nonrenewable resource

game. We show that (i) the outcomes of the closed-loop and the open-loop dominant firm

nonrenewable resource games coincide and (ii) when the number of fringe firms becomes
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arbitrarily large, the equilibrium outcome of the closed-loop oligopoly game does not

coincide with the equilibrium outcome of the closed-loop dominant-firm nonrenewable

resource game. While the first result shows the robustness of the open-loop cartel-fringe

outcome derived in Salant (1976), our second result contrasts with the case where firms

use open-loop strategies.

More specifically, we consider an oligopoly where each firm exploits a private ex-

haustible resource and where one firm (the cartel) has a cost advantage over the other

firms (fringe firms). All firms compete à la Cournot in the resource market. Assume the

cartel chooses a strategy that specifies the extraction rate at each moment as a function

of the state, described by the vector of stocks of all firms, at that moment. While the

cartel takes the strategy of each fringe firm as given, its extraction rate depends on the

its own stock as well as all fringe firms’ stocks. When weighing the impact of an extra

unit of extraction at a given moment it takes into account three effects (i) the additional

revenue, (ii) the reduction of its available stock and (iii) the impact of this change in

its own stock on the extraction of its competitors. This latter effect that we refer to

as the feedback effect is absent when firms use open-loop strategies. We show that the

equilibrium outcome of the open-loop game cannot be supported as the outcome of an

equilibrium of the closed-loop game. This is due to the presence of the feedback effect.

More surprisingly, we show that this remains true even in the limit case where the num-

ber of fringe firms is let to tend to infinity, while keeping the agregate resource stock

unchanged: the feedback effect does not vanish as the market power of each fringe firm

is diluted by the increase in the total number of fringe firms.

In deriving our conclusions we exploit the analysis in Benchekroun et al. (2008) which

provides a full characterization of the open-loop Nash equilibrium of an asymmetric

nonrenewable resource game with a finite as well as an infinite number of fringe players,

for all possible constant marginal extraction costs. Benchekroun et al. (2008) is closely

related to Lewis and Schmalensee (1980) and Loury (1986) which have studied the case

of a finite number of oligopolists. The former authors were mainly interested in the order

of exploitation and their analysis mainly concerns the case of two players. Loury studies

the case of equal costs. All these papers focus on the case where firms use open-loop

strategies.

Polasky (1990) shows in a discrete time model with a finite number of players that the

open-loop equilibrium is not subgame perfect if the exhaustion dates of firms differ. He
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then considers a duopoly model with linear demand and equal and constant marginal

extraction costs. He also postulates an exogenous instant of time T, after which the

extracted commodity is worthless. He then claims that if the per period profit function

is quadratic in extraction and depends only on current extraction (and not on existing

stocks) and if no firm exhausts before T, open-loop and feedback equilibria coincide. But

then he proves that in the duopoly model with equal initial stocks and equal constant

marginal extraction costs and in the absence of an exogenous T, the open-loop and

the feedback equilibrium do not coincide because one firm can and will manipulate its

own exhaustion time in a profitable way. The present paper uses a continuous time

formulation of a nonrenewable resource oligopoly, allows for asymmetries between firms

(in terms of costs, stocks and number of firms in each category) and includes the cartel-

fringe framework.

Our methodology is related to the work done by Groot et al. (1992, 2003) who studied

the case of the cartel being a Stackelberg leader and the fringe being a price taker. The

cartel-fringe model with Stackelberg leadership was first introduced by Gilbert (1978).

It is well-known that in this model the open-loop Stackelberg equilibrium concept suffers

from time inconsistency for plausible parameter values, and is therefore not a feedback

equilibrium (see Newbery (1981) and Ulph (1982)). But open-loop and closed-loop

equilibrium outcomes do coincide for at least some parameter values. In this paper we

consider the case where the cartel and fringe firms simultaneously choose their respective

strategies.

To our knowledge this paper is a first to specify a closed-loop formulation for a

dominant firm dynamic game. The difficulty lies in reconciling the intrinsic myopic

behavior of a fringe firm assumed through price taking and the rather sophisticated

(or farsighted) behavior assumed by the use of closed-loop strategies. We propose the

following scenario for the closed-loop dominant firm model: each fringe firm takes the

price path as given and determines its extraction strategy which is allowed depend on

its own stock only; the cartel takes each fringe firm’s strategy as given and determines a

pricing strategy (or alternatively a production strategy) that depends on its own stock

and all fringe’s stocks. The outcome of this simultaneous move is an equilibrium if the

market of the resource is in equilibrium at each moment.

We present the model as well as the open-loop Nash equilibrium with a finite number

of fringe firms in the next section. In section 3, we compare the equilibrium outcomes of
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the open-loop oligopoly game and the closed-loop oligopoly game. The crux of the paper

is in section 4 where we consider the closed-loop dominant-firm nonrenewable resource

game.

2 Model and the Open-loop Nash equilibrium

There are two types of mines c and f, distinguished by their marginal extraction costs.

There is one c−type mine, owned by a cartel, and there are n mines of the f−type. The
owner of an f−mine is called a fringe member. Marginal extraction costs are constant:
kc and kf . The cartel’s initial stock is Sc

0. Fringe firm i (i = 1, 2, ..., n) is endowed with

an initial stock Sf
0i. Demand for the resource is stationary and linear with a choke price

p̄ : p(t) = p̄ − d(t), where p(t) is the price at time t, d(t) is the quantity demanded

at time t and p̄ > max{kc, kf}. We work in continuous time, which starts at time
0. Extraction rates at time t ≥ 0 are denoted by qc (t) ≥ 0 and qfi (t) ≥ 0. Define

qf (t) =
nX
i=1

qfi (t) and Sf
0 =

nX
i=1

Sf
0i as aggregate supply and initial aggregate stocks of

the fringe firms. In an equilibrium at each moment t ≥ 0 the price of the resource is
given by p(t) = p̄−qc(t)−qf(t). For the time being all fringe firms are assumed identical
with regard to their stocks: Sf

0i = Sf
0 /n. Any feasible extraction path for a firm is

subject to the condition that total extraction over time equals the initial stock. This is

called the resource constraint. It reads

∞Z
0

qc(s)ds = Sc
0

for the cartel and ∞Z
0

qfi (s)ds = Sf
0i

and for fringe member i. We formulate the resource constraints as an equality because

in any equilibrium all resource stocks will get exhausted in view of the assumption that

p̄ > max{kc, kf}. In the oligopoly game, firms compete à la Cournot in the resource
market and the objective of each firm is to maximize the discounted sum of its profits

with an equal and constant discount rate r.

Definition: Open-loop Nash Cournot equilibrium (OLNE)
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A vector q (.) ≡ (qc (.) , qf1 (.) , ..., qfn (.)) with q(t) ≥ 0 for all t ≥ 0 is an open-loop
Nash-Cournot equilibrium if

i. all resource constraints are satisfied

ii.

∞Z
0

e−rs[Max
©
p̄− qc(s)− qf(s), 0

ª
− kc]qc(s)ds

≥
∞Z
0

e−rs[Max
©
p̄− q̂c(s)− qf(s), 0

ª
− kc]q̂c(s)ds

for all feasible q̂c.

iii. for all i = 1, 2, ..., n

∞Z
0

e−rs[Max
©
p̄− qc(s)− qf(s), 0

ª
− kf ]qfi (s)ds

≥
∞Z
0

e−rs[Max{p̄− qc(s)−
X
j 6=i

qfj (s)− q̂fi (s), 0}− kf ]q̂fi (s)ds

for all feasible q̂fi .

Benchekroun et al. (2008) characterize the OLNE of this nonrenewable resource

oligopoly game. They allow for an arbitrary number of firms that have the c-type mines.

For our present purpose this is less relevant, as will be made clear in due course. By

S, C and F we denote intervals of time with simultaneous supply, sole supply by the

cartel and sole supply by the fringe, respectively. Benchekroun et al. have established

the following proposition.

Proposition 1

i. Suppose
1

2
(p̄+ kc) < kf

For a given Sf
0 , there exists S̃

c
0 > 0 such that the OLNE sequence reads C → S → F if

Sc
0 > S̃c

0 and S → F if Sc
0 ≤ S̃c

0.

ii. Suppose
1

2
(p̄+ kc) = kf
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Then the OLNE yields S → F

iii. Suppose
1

2
(p̄+ kc) > kf

Let σ ≡ p̄+nkf−(n+1)kc
n( p̄+kc−2kf)

. The OLNE sequence depends on the initial stocks as displayed

below
Stocks Sc

0/S
f
0 < σ Sc

0/S
f
0 = σ Sc

0/S
f
0 > σ

OLNE S → F S S → C

3 Open-loop versus closed-loop: the case of a finite

number of players

A closed-loop strategy for a firm is a decision rule that gives the extraction rate at t as a

function of t and the vector of stocks at time t, S (t) = (Sc (t) , Sf
1 (t) , S

f
2 (t) , ..., S

f
n (t)).

The definition of a closed-loop Nash equilibrium CLNE reads as follows1.

Definition: Closed-loop Nash-Cournot equilibrium (CLNE)

A vector of closed-loop strategies φ ≡
³
φc, φf1 , ..., φ

f
n

´
is a closed-loop Nash-Cournot

equilibrium if

i. the resource constraint is satisfied for all firms, where qc (t) = φc (t, S (t)) and

qfi (t) = φfi (t, S (t)) (i = 1, 2, ..., n)

ii.

∞Z
0

e−rs[Max{p̄−
nX
i=1

φfi (s, S (s))− φc (t, S (t)) , 0}− kc]φc (t, S (t)))ds

≥
∞Z
0

e−rs[Max{p̄−
nX
i=1

φfi (s, S (s))− φ̂
c
(t, S (t)) , 0}− kc]φ̂

c
(t, S (t)) ds

for all feasible strategies φ̂
c
.

iii. for all i = 1, 2, ..., n

1For both the OLNE and CLNE we give an ad-hoc definition for this resource game, for a more

formal treatment we refer to Dockner et al. (2000) or Başar and Olsder (1995).
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∞Z
0

e−rs[Max{p̄−
nX

j=1

φfj (s, S (s))− φc (t, S (t)) , 0}− kf ]φfi (s, S (s)) ds

≥
∞Z
0

e−rs[Max{p̄−
nX
j 6=i

φfi (s, S (s))− φ̂
f

i (s, S (s))− φc (t, S (t)) , 0}− kf ]φ̂
f

i (s, S (s)) ds

for all feasible strategies φ̂
f

i .

In this section we determine whether the OLNE outcome can coincide with the

outcome of a CLNE.

The case S → F

Proposition 1 provides conditions for the OLNE equilibrium to contain the sequence

S → F . We seek to determine if there exists a CLNE, that is therefore subgame-perfect,

that replicates the exploitation path of the OLNE, given a vector of initial stocks. The

cartel takes the closed-loop strategy of the fringe φf (S, t) as given and chooses a closed-

loop strategy φc (S, t) that maximizes its discounted sum of profits
∞Z
t

e−rs
¡
Max

©
p̄− qc(s)− φf (S(s), s) , 0

ª
− kc

¢
qc(s)ds (1)

subject to
∞Z
t

qc(s)ds ≤ Sc (2)

and ∞Z
t

φfi (S (s) , s) ds ≤ Sf
i , i = 1, 2, ..., n (3)

for all non-negative couples (S, t) , with qc(s) = φc (S (s) , s) .

The Hamiltonian associated with the cartel’s problem is given by

Hc(qc, S, μcc, μ
c
f , t) = e−rt

Ã
Max{p̄− qc −

nX
i=1

φfi (S, t) , 0}− kc

!
qc−μccqc−

nX
i=1

μcfiφ
f
i (S, t)

where μcc is the costate variable associated with Sc and μcfi is the costate variable as-

sociated with Sf
i . Applying the maximum principle gives the following set of necessary

conditions for an interior solution at time t:

e−rt
¡
p̄− 2qc(t)− φf (S(t), t)− kc

¢
− μcc(t) = 0 (4)
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μ̇cc(t) = −
∂Hc

∂Sc
=

nX
i=1

¡
e−rtqc(t) + μcfi(t)

¢ ∂φfi (S (t) , t)
∂Sc

(5)

μ̇cfi(t) = −
∂Hc

∂Sf
i

=
nX
i=1

¡
e−rtqc(t) + μcfi(t)

¢ ∂φfi (S (t) , t)
∂Sf

i

(6)

where

φf (S (t) , t) =
nX
i=1

φfi (S (t) , t)

Appendix A provides a further characterization of the OLNE in this case, based on

Benchekroun et al. (2008). There it is shown that along the phase of simultaneous

supply, taken to be from time 0 till time t1, the production paths of the fringe and the

cartel along the OLNE are given by

(n+ 2)qc(t) = p̄+ n
¡
kf + λfert

¢
− (n+ 1)

¡
kc + λcert

¢
(7)

2 + n

n
qf(t) = p̄+

¡
kc + λcert

¢
− 2

¡
kf + λfert

¢
(8)

where λc and λf are the constant shadow prices of the resource stocks of the cartel and

the fringe members respectively. Hence, in view of (4) and (7), for a CLNE to result in

the extraction path of the OLNE, we must have μcc (s) = λc, for all instants s ≥ t for all

t ≥ 0. From necessary condition (5) it follows that then

nX
i=1

¡
e−rtqc(t) + μcfi(t)

¢ ∂φfi (S (t) , t)
∂Sc

= 0

Given the symmetry of fringe firms we must have either e−rsqc + μcfi = 0 where qc

is the OLNE equilibrium path of the cartel, and therefore μcfi (t) = −e−rtqc (t) , or
∂φfi (S (t) , t) /∂S

c = 0. The first possibility is in contradiction with the necessary con-

ditions since it implies from (6) that μ̇cfi(t) = 0, but e−rsqc (t) is not constant along

the OLNE. Thus we have established that for the OLNE outcome to coincide with the

outcome of a CLNE it is necessary that along the equilibrium path

∂φfi (S (t) , t)

∂Sc
= 0 for all t ≥ 0, for every fringe firm i.

Given the symmetry of fringe firms we have

∂φfi (S (t) , t)

∂Sc
=
1

n

∂φf (S (t) , t)

∂Sc
=
1

n

∂qf(t)

∂Sc
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which gives
2 + n

n

∂φf(S(t), t)

∂Sc
=

∂
¡
λc − 2λf

¢
ert

∂Sc

where

λf = e−rT
¡
p̄− kf

¢
and λc =

n

n+ 1
λf +

e−rt1
¡
p̄+ nkf − (n+ 1) kc

¢
n+ 1

As explained in appendix A the first of these two latter equations states that the

market price at the instant of exhaustion of the resource equals the choke price; the

second equation follows from the requirement that the price path is continuous. The

two equations yield

λc − 2λf =
µ

n

n+ 1
− 2
¶
e−rT

¡
p̄− kf

¢
+

1

n+ 1
e−rt1

¡
p̄+ nkf − (n+ 1) kc

¢
(9)

The time of transition t1 and the final time T satisfy (see appendix A):

(2 + n) rSc
0 =

¡
p̄+ nkf − (n+ 1) kc

¢ ¡
rt1 − 1 + e−rt1

¢
(10)

r

µ
Sf
0 +

n

n+ 1
Sc
0

¶
=

n

n+ 1

¡
p̄− kf

¢ ¡
rT − 1 + e−rT

¢
(11)

From (9) we have

∂
¡
λc − 2λf

¢
∂Sc

= −r
µ

n

n+ 1
− 2
¶
e−rT

∂T

∂Sc

¡
p̄− kf

¢
− re−rt1

∂t1
∂Sc

¡
p̄+ nkf − (n+ 1) kc

¢
n+ 1

(12)

We derive ∂T/∂Sc and ∂t1/∂S
c from (10) and (11) and substitute them into (12) to

obtain
∂
¡
λc − 2λf

¢
∂Sc

= r

µ
n+ 2

n+ 1

¶µ
1

(TerT − ert)
− 1

(t1ert1 − ert)

¶
For any t ≥ 0, we have that

f (X) =
1

(XerX − ert)

is strictly decreasing in X and therefore
∂(λc−2λf)

∂Sc
6= 0 since T > t1. Hence for any

equilibrium that reads C → S → F or S → F a necessary condition for the CLNE to

yield the OLNE extraction path is not met. Note that our result holds true even in the

limit case where n =∞ since for n→∞ we have

∂
¡
λc − 2λf

¢
∂Sc

= r

µ
1

(TerT − ert)
− 1

(t1ert1 − ert)

¶
6= 0

10



The argument also goes trough for any cost constellation that yields this equilibrium

sequence. We have thus shown the following.

Proposition 2

Suppose the OLNE yields the sequence S → F then the OLNE extraction path cannot

be obtained as the extraction path of a CLNE. This is true even when n→∞.

To conclude our analysis we note that for a vector of strategies to qualify as a non-

degenerate CLNE it must specify extraction rates for all possible values of the initial

stocks. Since there always exists a range of initial stocks such that the OLNE yields the

sequence S → F we conclude from proposition 2 that there exists no CLNE that will

replicate the OLNE equilibrium outcome for all values of the vector of stocks.

It turns out that this result is robust to restrictions on the state space. Suppose

we consider a less restrictive condition where we require a CLNE to replicate an OLNE

outcome only for a subset of positive measure of the state space.

The case S → C

For initial values of the stocks such that such that the OLNE sequence is S → C,

Proposition 2 does not rule out the possibility that there exists a CLNE to replicate an

OLNE outcome. We know from Proposition 1 that if kf < 1
2
[p̄+kf ] the equilibrium reads

S → C if the initial resource stock of the fringe is not too large. We seek to determine

whether there exists a feedback Nash equilibrium, that is therefore subgame-perfect, that

replicates the exploitation path of the OLNE, given a vector of initial stocks. Along the

phase of simultaneous supply equations (7) and (8) hold, where, in the case at hand

λc = e−rT (p̄− kc) and
1

2
(p̄+ kc + ert1λc) = kf + ert1λf

and where the transition date t1 and the exhaustion date T are respectively given by

2 + n

n
rSf

0 = (p̄+ kc − 2kf)
¡
rt1 − 1 + e−rt1

¢
and

r

µ
Sf
0 +

1

2
Sf
0

¶
= (p̄− kc)

¡
rT − 1 + e−rT

¢
.

It readily follows that qf (t) is independent of Sc. Contrary to the previous case we

will henceforth concentrate on the fringe. The problem is that we cannot repeat the
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steps taken in the previous case, since we have to be clear about what to mean by a

marginal change in the stock of one of the fringe members, keeping the other stocks fixed.

This poses a difficulty because it has been assumed that all fringe members are equal,

and the OLNE has been derived under that assumption. However, it is not difficult to

conceptualize what will happen if one fringe member is given an addition to its reserve.

All other fringe members will exhaust their resource before this fringe member under

consideration does, as is formally demonstrated in Appendix B. Hence it is left with the

cartel as sole competitor. We are therefore done if we can show that the OLNE and the

CLNE do not coincide for the case of a single cartel and a single fringe member. Due

to symmetry this is straightforward since we can repeat the steps taken in the previous

case, ceteris paribus, and obtain the same negative result. For the sake of completeness

the proof is given in detail in appendix C.

Proposition 2b

Suppose the OLNE yields the sequence S → C, i.e.

1

2
(p̄+ kc) > kf and

Sc
0

Sf
0

> σ

then the OLNE extraction path cannot be the outcome of a CLNE extraction path. This

is true even when n→∞.

4 Open-loop versus closed-loop: the cartel-fringe game

The open-loop Nash cartel-fringe nonrenewable resource game is specified in Salant

(1976) and unfolds as follows. There is a coherent cartel and a number of fringe firms

each possessing a stock of the nonrenewable resource. Each fringe firm takes the price

path as given and chooses a path of extraction, whereas the cartel takes the extraction

path of the fringe as given and determines a price path. All firms choose their respective

strategies simultaneously. The outcome of this game is an equilibrium if the market

equilibrium holds at every moment. We denote the open-loop equilibrium of cartel-

fringe game by OL-CFE.

It can be shown that the limit case of the OLNE outcome when the number of fringe

firms tends to infinity yields the outcome of an OL-CFE (Salant (1976) Appendix B

treats the case where extractions costs are zero).

Proposition 3
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The OL-CFE, with price taking behavior of the fringe members, is characterized as

follows:

i. If 1
2
(p̄+ kc) < kf , then the equilibrium sequence is C → S → F, with the F phase

collapsing if Sc
0 is ’small’.

ii. If 1
2
(p̄+ kc) = kf , then the equilibrium sequence is S → F

iii. If 1
2
(p̄+ kc) > kf , let σCFE ≡ kf−kc

p̄+kc−2kf then the equilibrium sequence is

Stocks Sc
0/S

f
0 < σCFE Sc

0/S
f
0 = σCFE Sc

0/S
f
0 > σCFE

OL-CFE S → F S S → C

While the open-loop formulation of the cartel-fringe model is widely used and an-

alyzed in the literature, there exists, to our knowledge, no analysis of a closed-loop

formulation of the cartel-fringe game. This paper is a first attempt to specify a closed-

loop formulation for a dominant firm dynamic game. The difficulty lies in reconciling the

intrinsic myopic behavior of a fringe firm assumed through price taking and the rather

sophisticated (or farsighted) behavior assumed by the use of closed-loop strategies.

We propose the following scenario for the closed-loop dominant firm model: each

fringe firm takes the price path as given and determines its extraction strategy which is

allowed to depend on its own stock only; the cartel takes the closed-loop representation of

the fringe’s production path as given and determines a pricing strategy (or alternatively

a production strategy) that depends on its own stock and all fringe firms’ stocks. The

outcome of this simultaneous move is an equilibrium if the market of the resource is

in equilibrium at each moment. We denote the closed-loop equilibrium of cartel-fringe

game by CL-CFE. Formally

Definition: Closed-loop Cartel-Fringe equilibrium (CL-CFE)

A vector
³
π, φc, φf , φf1 , ..., φ

f
n

´
with a price path π = π (t) and closed-loop extraction

rules φc = φc (t, S) , φf = φf (t, S) and φfi = φfi

³
t, Sf

i

´
(i = 1, 2, ..., n) is a closed-loop

Cartel-Fringe equilibrium (CL-CFE) if

i. the resource constraint is satisfied for all firms, where qc (t) = φc (t, S (t)) and

qfi (t) = φfi

³
t, Sf

i (t)
´
(i = 1, 2, ..., n)

13



ii. given φf ,

∞Z
0

e−rs[Max
©
p̄− φf (s, S (s))− φc (t, S (t)) , 0

ª
− kc]φc (t, S (t)))ds

≥
∞Z
0

e−rs[Max
n
p̄− φf (s, S (s))− φ̂

c
(t, S (t)) , 0

o
− kc]φ̂

c
(t, S (t)) ds

for all feasible strategies φ̂
c
.

iii. for all i = 1, 2, ..., n, given π

∞Z
0

e−rs[π (s)− kf ]φfi

³
s, Sf

i (s)
´
ds ≥

∞Z
0

e−rs[π (s)− kf ]φ̂
f

i

³
s, Sf

i (s)
´
ds

for all feasible strategies φ̂
f

i .

iv. for all t ≥ 0 : φf
¡
t, Sf (t)

¢
= Σn

i=1φ
f
i

³
t, Sf

i (t)
´

v. for all t ≥ 0 : π (t) =Max
©
p̄− φf

¡
t, Sf (t)

¢
− φc (t, S (t)) , 0

ª
The function φf

¡
t, Sf

¢
corresponds to the aggregate extraction of the fringe written

in a closed-loop form. It is not a strategy per se, it arises from the individual optimal

choice of each fringe firm of a production path, and gives the behavior of the fringe as a

function of the vector of stocks. The cartel takes the fringe’s behavior, φf
¡
t, Sc, Sf

¢
, as

given and determines its pricing (or production) strategy which is allowed to depend on

its stock and the fringe’s stock. Condition v states that, for any t ≥ 0, given a vector
of stocks, the realization of p̄− φf

¡
t, Sf (t)

¢
− φc (t, S (t)) yields the price π (t) taken as

given in the fringe’s problem stated in iii.

The assumption about the fringe firms’ behavior is important and is a modelling

choice. One could follow alternate assumptions regarding the fringe firm’s degree of

sophistication. For instance the fringe firm could be allowed to consider the price rule

as given but not the price path; in which case the fringe firm can still influence the

price path through its influence on its own stock. This latter behavior of the fringe firm

did not appeal to us because it assumes that a fringe firm, while determining its best

response to a strategy of the cartel, is aware of the impact of its own stock on the market

price but is not aware of the impact of its own quantity sold on the same market price.

This implication appears rather contradictory. Thus, and in keeping with the typically

assumed myopic behavior of a fringe firm, we retain the assumption that each fringe

14



firm takes the price path as given and that it may condition its extraction rate on its

own stock only2.

We argue that with a price taking fringe, there exists a CL-CFE that yields the same

outcome as the OL-CFE outcome, for any composition of the initial stocks. The proof

consists of three steps. First we build a closed-loop representation of each fringe firm’s

production path under the open-loop cartel-fringe equilibrium (Lemma 1 below). Then

we show that for the cartel, the closed-loop representation of its open-loop equilibrium

price is a best response to the fringe firms closed-loop strategy (built in the first step)

(Lemma 3 below). We complete the proof by noting that for each fringe firm, the closed-

loop representation of its open-loop equilibrium strategy (built in the first step), is a

best response to the open-loop cartel-fringe (OL-CFE) price path.

We only present the details of the proof for the case where the sequence of the OL-

CFE is S → C , i.e., when 1
2
(p̄+ kc) > kf and for Sc, Sf such that Sc

Sf
> σCFE. A

similar treatment and the same conclusion regarding the existence of a CL-CFE that

yields the same outcome as the OL-CFE outcome holds when the OL-CFE sequence is

S → F . From here on, we are assuming that 1
2
(p̄+ kc) > kf .

To write closed-loop representations of the open-loop equilibrium paths it will be

useful to define the following function

h (z) = ln

µ
1

z

¶
+ z − 1.

with domain3 (0, 1]. It can easily be checked that the function h is strictly decreasing

over (0, 1] with limz→0 h (z) =∞ and limz→∞ h (z) = 0. Therefore, for any A ≥ 0 there
exists a unique solution in (0, 1] to h (z) = A.

For any Sf ≥ 0, let x be the unique solution in (0, 1] to

h (x) =
rSf

p̄+ kc − 2kf (13)

and for any Sc, Sf ≥ 0, let y be the unique solution in (0, 1] to

h (y) = r
2Sc + Sf

p̄− kc
. (14)

Lemma 1
2Given a price path, the only payoff relevant information for a fringe firm is its own available stock.
3The reason why we focus on this domain is transparent in Lemma 1 and its proof, see e.g. (15).
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For any Sc, Sf ≥ 0 such that the OL-CFE sequence is S → C, the OL-CFE outcome

coincides with the outcome of the following closed-loop strategies :

φf
¡
Sf
¢
= qf (t, x) =

¡
p̄+ kc − 2kf

¢
(1− x) (15)

and

φc
¡
Sc, Sf

¢
= qc (t, x, y) =

1

2

¡
p̄+ kc − 2kf

¢
(x− 1)− 1

2
(p̄− kc) (y − 1) (16)

where x and y are respectively the unique solutions in (0, 1] to (13) and (14).

Proof: see Appendix D.

Note that when Sf = 0 we have x = 1 and when Sf = Sc = 0 we have y = 1.

Therefore, the closed-loop strategies given in (15) and (16) also represent the open-loop

extraction paths during the last phase C, where the cartel is the sole supplier, with

φf (0) = qf (t, 1, y) = 0

and

φc (Sc, 0) = qc (t, 1, y) =
1

2
(p̄− kc) (1− y) .

We also remark that the strategies are feedback strategies (they do not depend on time

explicitly); this is due to the fact that the problem of each firm is autonomous.

The closed-loop representation of the production paths allows to get the cartel’s

discounted sum of profits in a closed-loop form.

Lemma 2

For any Sc, Sf ≥ 0 such that the OL-CFE sequence is S → C, a closed-loop repre-

sentation of the cartel’s discounted sum of profits at an initial date t with stocks
¡
Sf , Sc

¢
is

Πc (t, x, y) =
e−rt

4r
{4
¡
kf − kc

¢2
(1− x) + 4

¡
kf − kc

¢ ¡
p̄+ kc − 2kf

¢
x ln(

1

x
) (17)

+
¡
p̄+ kc − 2kf

¢2 ¡
x− x2

¢
+ (p̄− kc)2

¡
y2 + x− 2y

¢
}

where x and y are respectively the unique solutions in (0, 1] to (13) and (14).

Proof: see Appendix E.

We are now able to state the following.

Lemma 3

16



For any Sc, Sf ≥ 0 such that the OL-CFE sequence is S → C, the cartel’s closed-loop

strategy (16) (representation of the cartel’s open-loop equilibrium production path) is

a best response to the fringe’s closed-loop behaviour (15) (representation of the fringe’s

open-loop equilibrium production path).

Proof: see Appendix F.

Given the price path of the OL-CFE, and using the symmetry among the fringe firms

it is straightforward to show that the following strategy

φfi

³
Sf
i

´
= qfi (t, x) =

1

n

¡
p̄+ kc − 2kf

¢
(1− xi) (18)

where for any Sf ≥ 0, xi is the unique solution in (0, 1] to

h (xi) =
nrSf

i

p̄+ kc − 2kf , (19)

is a closed-loop representation of the best response of the fringe firm to the OL-CFE

price path.

The resource market clearing condition is obviously satisfied since it is satisfied under

the OL-CFE and the closed-loop strategies replicate the output path and therefore price

path of that equilibrium4.

Proposition 3

For any Sc, Sf ≥ 0 such that the OL-CFE sequence is S → C, there exists a CL-CFE

that yields the same outcome as the OL-CFE’s outcome.

Remark: The same treatment and result holds for the case where the OL-CFE’s

sequence is S → F . Given the similarity (in the approach and length) of the proof with

the case presented in Proposition 3, it is omitted.

Proposition 3 combined with Proposition 2b allows us to draw an important conclu-

sion regarding the microfoundation of the cartel-fringe model.

Corollary

The closed-loop cartel-fringe equilibrium outcome does not coincide with the outcome

of the limit case of the asymmetric oligopoly CLNE where the number of fringe firms

tends to infinity.

This is in sharp contrast with Salant (1976) where price taking behaviour of the

fringe is justified as the limit case of an asymmetric oligopoly where the number of

4For φc
¡
Sc, Sf

¢
and φf

¡
Sf
¢
and given initial stocks, the realizations of p(t;φc

¡
Sc, Sf

¢
, φf

¡
Sf
¢
)

yields the OL-CFE price path.
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fringe firms is arbitrarily large. The difference is due to the presence of the additional

level of interaction in the game with closed-loop strategies. In the case of a closed-

loop oligopoly, when deriving its best response to the competitors’ strategies, each firm

(large and small) can still impact the extraction rates of its competitors (even though it

takes their strategies as given). This additional layer of interaction in a CLNE makes the

OLNE and the CLNE differ and does not vanish as the market power of fringe firms goes

to zero. When firms can use closed-loop strategies, the outcome of the game where the

fringe is assumed from the outset to be price taker is not useful to predict the outcome

of the limit case where the market power of the fringe firms becomes arbitrarily small.

5 Conclusions

We have considered the exploitation of a nonrenewable resource under imperfect com-

petition and where firms are asymmetric. In the case of an asymmetric oligopoly model

we have shown that the outcome of the OLNE cannot be obtained as the outcome of a

CLNE even in the limit case where the number of high cost firms tends to infinity. In the

case of the benchmark cartel-fringe model, we specified and solved a closed-loop domi-

nant firm nonrenewable resource game, with a price taking fringe. We have shown that

the outcomes of the closed-loop and the open-loop dominant firm nonrenewable resource

game (à la Salant 1976) coincide. Moreover, we have shown that the interpretation of

the dominant firm model, where the fringe is assumed from the outset to be price taker,

as a limit case of an asymmetric oligopoly where the number of fringe firms tends to

inifinity does not extend to the case where firms can use closed-loop strategies. Indeed,

when the number of fringe firms becomes arbitrarily large, the equilibrium outcome of

the closed-loop oligopoly game does not coincide with the equilibrium outcome of the

closed-loop dominant firm nonrenewable resource game.
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Appendix A
Here we summarize the findings on the open-loop Nash equilibrium with a finite

number of players. There is one cartel and there are n fringe members. Each fringe firm

i takes the strategy profile of its n competitors as given and maximizes its present value

profits subject to the resource constraint. The corresponding Hamiltonian reads
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Hf
i (q

f
i , q

c, qf , λfi , t) = e−rt
¡
p̄− qc − qf − kf

¢
qfi + λfi (−q

f
i )

where qf and qc denote the aggregate supply by the fringe and the supply by the cartel,

respectively. For the cartel the Hamiltonian reads

Hc(qc, λc, qf , t) = e−rt
¡
p̄− qc − qf − kf

¢
qc + λc (−qc)

Among the necessary conditions we have that the co-state variables are constant since

stocks are absent from the Hamiltonians. In addition, the Hamiltonians are maximized

with respect to the own supply of the agent. We will use the symmetry among the fringe

players, i.e. qfi = qf/n and λfi = λf for all i. Then we arrive at the following necessary

conditions.

Along an F interval:

e−rt
µ
p̄− qf(t)− 1

n
qf(t)− kf

¶
= λf

p(t) =
1

n+ 1

¡
p̄+ n

¡
kf + λfert

¢¢
≤ kc + ertλc.

The first condition follows from the maximization of the Hamiltonian of player i. The

second condition is necessary in order for the cartel not to supply.

Along a C interval:

e−rt (p̄− 2qc(t)− kc) = λc

p(t) =
1

2

¡
p̄+ kc + λcert

¢
≤ kf + ertλf

Along an S interval

(2 + n)qc(t) = p̄+ n
¡
kf + λfert

¢
− (n+ 1)

¡
kc + λcert

¢
n+ 2

n
qf(t) = p̄+ kc + λcert − 2

¡
kf + λfert

¢
p(t) =

1

2 + n

¡
p̄+ kc + λcert + n(kf + λfert

¢
).
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Continuity of the price path at the different possible transitions gives:

- a transition at t from S to C or vice versa requires

1

2
(p̄+ kl + λlert) = kf + λfert

- a transition at t from S to F or vice versa requires

1

n+ 1
(p̄+ n

¡
kf + λfert

¢
) = kc + λcert

- a transition at t from F to C or vice versa requires

1

2
(p̄+ kc + λcert) =

1

n+ 1
(p̄+ n

¡
kf + λfert

¢
)

We also have to take into account that at the moment of exhaustion of all resource

stocks, the price must have reached the choke level:

p(T ) = p̄

Consider the sequence S → C, with C the final phase before exhaustion and where the

transition takes place at instant of time t1 and exhaustion at T. Then it is tedious but

straightforward to derive (see Benchekroun et al. (2008))

2 + n

n
rSf

0 =
¡
p̄+ kc − 2kf

¢ ¡
rt1 − 1 + e−rt1

¢

(2 + n)rSc
0 = −1

2
n
¡
p̄+ kc − 2kf

¢ ¡
rt1 − 1 + e−rt1

¢
+

(1 +
1

2
n) (p̄− kc)

¡
rT − 1 + e−rT

¢
For the sequence S → F we have

(2 + n)rSc
0 =

¡
p̄+ nkf − (n+ 1) kc

¢ ¡
rt1 − 1 + e−rt1

¢

2 + n

n
rSf

0 = − 1

n+ 1

¡
p̄+ nkf −

¡
nf + 1

¢
kc
¢ ¡

rt1 − 1 + e−rt1
¢
+

2 + n

n+ 1

¡
p̄− kf

¢ ¡
rT − 1 + e−rT

¢
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Appendix B
In this appendix we modify the problem discussed in appendix A so as to allow for

an additional fringe member with a larger stock than all other n fringe members. We

will show that the stocks of all other fringe members will be depleted before the stock

of this particular fringe member is. The variables referring to the larger fringe member

are denoted by upper bars. Among the necessary conditions for an OLNE we have

e−rt
¡
p̄− 2q̄f(t)− qc(t)− qf(t)− kf

¢
≤ λ̄

f

e−rt(p̄− q̄f(t)− qc − n+ 1

n
qf(t)− kf) ≤ λf

e−rt
¡
p̄− q̄f(t)− 2qc − qf(t)− kc

¢
≤ λc

with equality holding if q̄f(t), qf(t) (aggregate supply of all other fringe members) and

qc(t) are positive, respectively. Since the fringe members only differ with respect to the

stocks, the shadow price of the larger stock is smaller that the shadow price of each

smaller stock: λ̄f < λf . This fact implies that we cannot have simultaneous supply at

the end because that would imply

p̄ = kf + erT λ̄
f
= kf + erTλf = kc + erTλc

which violates the requirement λ̄f < λf . It cannot be the case that the larger stock is

exhausted before the smaller stock, because that would require that

e−rT̄
¡
p̄− qc(T̄ )− qf(T̄ )− kf

¢
≤ λ̄

f

e−rT̄ (p̄− qc − n+ 1

n
qf(T̄ )− kf) ≤ λf

at the time T̄ of exhaustion of the larger stock, which is infeasible.

Appendix C
Here we prove that the case S → C cannot be sustained as a closed-loop equilibrium.

As was made clear in the main text as wel as in Appendix B, we only have to consider

the case of a single fringe member. The cartel takes the closed-loop strategy of the
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fringe as given φf (S, t) and chooses a closed-loop strategy φc (S, t) that maximizes its

discounted sum of profits

∞Z
t

e−rs
¡
p̄− qc(s)− φf (S (s) , s)− kc

¢
qc(s)ds

subject to
∞Z
t

qc(s)ds ≤ Sc

and ∞Z
t

φf (S (s) , s) ds ≤ Sf

for all non-negative couples (S, t) , with qc(s) = φc (S (s) , s) . The Hamiltonian for the

cartel reads

Hc(qc, S, μcc, μ
c
f) = e−rt

¡
p̄− qc − φf (S, t)− kc

¢
qc − μccq

c − μcfφ
f (S, t)

where μcc is the costate variable associated with Sc and μcf is the costate variable asso-

ciated with Sf . Applying the Maximum Principle gives the following set of necessary

conditions for an interior solution (i.e. qf > 0 and qc > 0):

e−rt
¡
p̄− 2qc(t)− φf (S (t) , t)− kc

¢
− μcc(t) = 0

μ̇cc(t) = −
∂Hc

∂Sc
=
¡
e−rtqc(t) + μcf(t)

¢ ∂φf (S (t) , t)
∂Sc

μ̇cf(t) = −
∂Hc

∂Sf
=
¡
e−rtqc(t) + μcf(t)

¢ ∂φf (S (t) , t)
∂Sf

We consider the case where the OLNE consists of a final phase with S → C. The

Hamiltonian associated with the OLNE problem of firm j (j = c, f) reads

Hj(qj, λj, t) = e−rt
¡
p̄− qc − qf − kj

¢
qj + λj

¡
−qj

¢
Among the necessary conditions we have that the co-state variable λj is constant. In ad-

dition the Hamiltonian is maximized. This implies that if at time t there is simultaneous

supply we have

3qc(t) = p̄+ kf + λfert − 2
¡
kc + λcert

¢
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3qf(t) = p̄+
¡
kc + λcert

¢
− 2

¡
kf + λfert

¢
3p(t) = p̄+ kc + λcert + kf + λfert

Along the C interval we have

2qc(t) = p̄− kc − λcert

2p(t) = p̄+ kc + λcert

In addition, the equilibrium price is continuous at the time of transition t1.Moreover,

at the final time T the price must be equal to p̄. Taking this into account we can derive

the stocks needed to have this equilibrium from some t in the S−phase on. We end up
with the following set of equations at such an instant of time.

3qc(t) = p̄+
¡
kf + λfert

¢
− 2

¡
kc + λcert

¢
λc = e−rT

¡
p̄− kf

¢
1

3
(p̄+ kc + λcert1 + kf + λfert1) =

1

2
(p̄+ kf + λfert1)

3rSf(t) =
¡
p̄+ kc − 2kf

¢ ¡
rt1 − rt− 1 + ert−rt1

¢

3rSc(t) = −1
2

¡
p̄+ kc − 2kf

¢ ¡
rt1 − rt− 1 + ert−rt1

¢
+
3

2
(p̄− kc)

¡
rT − rt− 1 + ert−rT

¢
From here on the analysis proceeds along the same lines as in the other case treated

in the main text. For completeness we write down the full argument. For a CLNE to

result in the extraction path of the OLNE, we must have μcc (s) = λc for all instants

s ≥ t for all t ≥ 0. Therefore μcc is constant. It follows that then¡
e−rtqc(t) + μcf

¢ ∂φf (S (t) , t)
∂Sc

= 0
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This implies that either (i) e−rtqc(t)+μcf(t) = 0 where q
c is the OLNE equilibrium path

of the cartel and therefore μcf (t) = −e−rtqc (t) or (ii)

∂φf (S (t) , t)

∂Sc
= 0.

Condition (i) implies that μ̇cf = 0, but e−rtqc (t) is not constant along the OLNE.

Hence, for a CLNE to result in the extraction path of the OLNE, we must have

∂
¡
φf (S (t) , t)

¢
∂Sc

= 0

along the OLNE where there is simultaneous supply. We next show that this condition

is not met in the open-loop Nash equilibrium.

Our strategy is to assume that the open-loop equilibrium is subgame perfect. Con-

sequently we represent extraction by the cartel as a function of time and the existing

stocks. So, we first write

3
∂φc

∂Sf
=

∂
¡
λf − 2λc

¢
ert

∂Sf

We have

λf − 2λc = −3
2
e−rT (p̄− kc) +

1

2
e−rt1 (p̄+ kc − 2kc)

So
∂
¡
λf − 2λc

¢
∂Sf

= r
3e−rT

2

∂T

∂Sf
(p̄− kc)− r

∂t1
∂Sf

e−rt1
¡
p̄+ kc − 2kf

¢
2

The derivatives with respect to the stocks follow from the expressions derived above for

these stocks.

3r =
¡
p̄+ kc − 2kf

¢ ¡
rt1 − rert−rt1

¢ ∂t1
∂Sf

0 = −1
2

¡
p̄+ kc − 2kf

¢ ¡
rt1 − rert−rt1

¢ ∂t1
∂Sf

+
3

2
(p̄− kc)

¡
rT − rert−rT

¢ ∂T

∂Sf

Therefore

0 = −3
2
r +

3

2
(p̄− kc)

¡
rT − rert−rT

¢ ∂T

∂Sf

Or
1

(T − ert−rT )
= (p̄− kc)

∂T

∂Sf
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and
3

(t1 − ert−rt1)
=
¡
p̄+ kc − 2kf

¢ ∂t1
∂Sf

Substituting gives

∂
¡
λf − 2λc

¢
∂Sf

= r
3e−rT

2

1

(T − ert−rT )
− r

3

(t1 − ert−rt1)

e−rt1

2

=
3r

2

µ
e−rT

(T − ert−rT )
− e−rt1

(t1 − ert−rt1)

¶
=

3r

2

µ
1

(TerT − ert)
− 1

(t1ert1 − ert)

¶
For any t we have that

f (X) =
1

(XerX − ert)

is strictly decreasing in X and therefore
∂(λf−2λc)

∂Sc
6= 0.

Appendix D

For any t ∈ [0, t1] we have

qf =
¡
p̄+ kc − 2kf

¢
−
¡
2λf − λc

¢
ert (20)

and

qc =
¡
kf − kc

¢
+
¡
λf − λc

¢
ert (21)

Therefore, after substitution into the inverse demand, we have that the price is

p = p̄− qf − qc = kf + λfert (22)

For any t ∈ [t1, T ] we have
qf = 0

and

qc =
1

2

¡
p̄− kc − λcert

¢
(23)

The transition time t1 is given by

ert1 =
p̄+ kc − 2kf

2λf − λc
(24)

26



and the terminal time T is given by

erT =
p̄− kc

λc
(25)

The costate variables λc and λf are determined using the resource constraints, which

gives Z t1

t

©¡
p̄+ kc − 2kf

¢
−
¡
2λf − λc

¢
ers
ª
ds = Sf (t)

or ¡
p̄+ kc − 2kf

¢
(t1 − t)−

¡
2λf − λc

¢ (ert1 − ert)

r
= Sf (t) (26)

For the cartel we haveZ t1

t

©¡
kf − kc

¢
+
¡
λf − λc

¢
ers
ª
ds+

Z T

t1

1

2
(p̄− kc − λcers) ds = Sc (t)

or¡
kf − kc

¢
(t1 − t)+

¡
λf − λc

¢ (ert1 − ert)

r
+
1

2
(p̄− kc) (T − t1)−

1

2
λc
¡
erT − ert1

¢
r

= Sc (t)

(27)

Let

x ≡
¡
2λf − λc

¢
ert

p̄+ kc − 2kf = er(t−t1) and y ≡ λcert

p̄− kc
= er(t−T ) (28)

We now show that x and y can be determined as the unique solutions to respectively

(13) and (14).

Substituting t1 from (24) into (26) yields after algebraic manipulations

¡
p̄+ kc − 2kf

¢µ1
r
ln

µ
p̄+ kc − 2kf

2λf − λc

¶
− t

¶
−
¡
2λf − λc

¢ ³ p̄+kc−2kf
2λf−λc − ert

´
r

= Sf (t)

(29)

which can be simplified into

ln

µ
p̄+ kc − 2kf

2λf − λc
e−rt

¶
− 1 +

¡
2λf − λc

¢
(p̄+ kc − 2kf)e

rt =
rSf (t)

(p̄+ kc − 2kf) (30)

or

ln

µ
1

x

¶
+ x =

rSf (t)

p̄+ kc − 2kf + 1 (31)

Combining (26) and (27) gives after simplification

(p̄− kc) (T − t)− λc
¡
erT − ert

¢
r

= 2Sc (t) + Sf (t)
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Substituting T from (25) gives after manipulations

ln

µ
1

y

¶
+ y = r

2Sc (t) + Sf (t)

p̄− kc
+ 1 (32)

Thus x and y depend on Sf and
¡
Sf , Sc

¢
respectively and combined with (21) and (20)

along with (28) gives a closed loop representation of the open-loop paths (16) and (15).

For any t ∈ [t1, T ] we have Sf = 0 and x = 1. It can easily be checked that

substituting x = 1 into (15) and (16) yields the extraction path of the cartel when it is

a sole supplier qf = 0 and (23)

Appendix E
After substitution of (20) and (21) the cartel’s profits are given by

Πc =

Z t1

t

e−rs
¡
kf − kc + λfers

¢ ¡
kf − kc +

¡
λf − λc

¢
ers
¢
ds

+

Z T

t1

e−rs
1

2
(p̄− kc − λcers)

1

2
(p̄− kc + λcers) ds

or

rΠc =
¡
kf − kc

¢2 ¡
e−rt − e−rt1

¢
+
¡
kf − kc

¢ ¡
2λf − λc

¢
(rt1 − rt) + λf

¡
λf − λc

¢ ¡
ert1 − ert

¢
+
1

4
(p̄− kc)2

¡
e−rt1 − e−rT

¢
− 1
4
(λc)2

¡
erT − ert1

¢
(33)

We first λf and λc as functions of x and y. We use (28) and get

λfert =

¡
p̄+ kc − 2kf

¢
x+ (p̄− kc) y

2

and

λcert = (p̄− kc) y

We then determine t1 and T as functions of x and y using (24), (25). Substituting λf ,

λc, t1 and T as functions of x and y into (33) gives after algebraic manipulations (17)

Appendix F
To prove this claim we show that (17) satisfies the Hamilton Jacobi Bellman (HJB)

equation of the cartel’s problem.

Since x = x
¡
Sf
¢
, from (31), and y = y

¡
Sf , Sc

¢
, from (32), we define

V c
¡
t, Sf , Sc

¢
= Πc (t, x, y)
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We check now that V satisfies the HJB equation for all
¡
Sf , Sc

¢
(such that the equilib-

rium sequence is S → C)

−∂V
c

∂t
=

∂V c

∂Sf

¡
−φf

¢
+Maxqc

½¡
p̄− kc − φf − qc

¢
qce−rt +

∂V c

∂Sc
(−qc)

¾
(34)

with qf given by (15). This is done in two steps: (i) we first check that qc given by (16)

solves the maximization problem; (ii) we show that when φf is given by (15) and qc is

given by (16) the function V c
¡
t, Sf , Sc

¢
= Πc (t, x, y) satisfies the cartel’s HJB equation.

(i) The first order condition associated with the maximization problem gives

¡
p̄− kc − φf − 2qc

¢
e−rt − ∂V c

∂Sc
= 0

or

qc =
1

2

µ
p̄− kc − φf − ∂V c

∂Sc
ert
¶

(35)

We now compute the derivative

∂V c

∂Sc
=

∂Πc

∂x

∂x

∂Sc
+

∂Πc

∂y

∂y

∂Sc

We have ∂x
∂Sc

= 0 and ∂y
∂Sc

= 2r
p̄−kc

y
y−1 and

∂Πc

∂y
=

e−rt

4r

¡
2 (p̄− kc)2 y − 2 (p̄− kc)2

¢
Hence

∂V c

∂Sc
=

e−rt

4r
2 (p̄− kc)2 (y − 1) 2r

p̄− kc
y

y − 1
∂V c

∂Sc
= e−rt (p̄− kc) y = λc (36)

Substitution of ∂V c

∂Sc
ert and of φf from 15 gives

qc =
1

2

¡
p̄− kc −

¡
p̄+ kc − 2kf

¢
(1− x)− (p̄− kc) y

¢
(37)

which (after simplification) is identical to (16).

(ii) We have
∂V c

∂t
=

∂Πc

∂t
= −rΠc
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and
∂V c

∂Sc
= e−rt (p̄− kc) y = λc (38)

We now turn to ∂V c

∂Sf
. We have

∂V c

∂Sf
=

∂Πc

∂x

∂x

∂Sf
+

∂Πc

∂y

∂y

∂Sf

with
∂x

∂Sf
=

r

p̄+ kc − 2kf
x

x− 1 and
∂y

∂Sf
=

r

p̄− kc
y

y − 1
After simplification we have

∂Πc

∂x
=

e−rt

4r

∙
4
¡
kf − kc

¢ ¡
p̄+ kc − 2f

¢
ln

µ
1

x

¶
+ 2

¡
p̄+ kc − 2kf

¢2
(1− x)

¸
and thus

∂Πc

∂x

∂x

∂Sf
=

e−rt

4

∙
4
¡
kf − kc

¢ x

x− 1 ln
µ
1

x

¶
− 2

¡
p̄+ kc − 2kf

¢
x

¸
We also have

∂Πc

∂y
=

e−rt

4r
2 (p̄− kc)2 (y − 1)

and thus
∂Πc

∂y

∂y

∂Sf
=

e−rt

4
2 (p̄− kc) y

We can now obtain∂V
c

∂Sf
as the sum of ∂Πc

∂y
∂y
∂Sf

and ∂Πc

∂x
∂x
∂Sf

which gives

∂V c

∂Sf
=
¡
kf − kc

¢ x

x− 1e
−rt ln

µ
1

x

¶
− 1
2

¡
p̄+ kc − 2kf

¢
xe−rt +

1

2
(p̄− kc) ye−rt

The last step consists of checking that when substituting each term ∂V c

∂t
, ∂V

c

∂Sf
, ∂V

c

∂Sc
qf and

qc into the HJB the equality holds for all Sf , Sc ≥ 0. This step is skipped. It involves
lengthy but straightforward algebraic simplifications only. More specifically it can be

shown that each side of the HJB equation

−∂V
c

∂t
= −qf ∂V

c

∂Sf
− qc

∂V c

∂Sc
+
¡
p̄− kc − qf − qc

¢
qce−rt (39)

reduces to

−x
µ
ln
1

x

¶¡
kc − kf

¢ ¡
p+ kc − 2kf

¢
−1
4

¡
p+ kc − 2kf

¢2
x2 +

1

2
(p− kc)

¡
p+ kc − 2kf

¢
x+

1

4
(p− kc)2 y2 − 1

2
(p− kc)2 y +

¡
kc − kf

¢2
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