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Abstract

We estimate the volatility of plant–level idiosyncratic shocks in the U.S. man-
ufacturing sector. Our measure of volatility is the variation in Revenue Total
Factor Productivity which is not explained by either industry– or economy–wide
factors, or by establishments’ characteristics. Consistent with previous studies,
we find that idiosyncratic shocks are much larger than aggregate random distur-
bances, accounting for about 80% of the overall uncertainty faced by plants. The
extent of cross–sectoral variation in the volatility of shocks is remarkable. Plants
in the most volatile sector are subject to about six times as much idiosyncratic
uncertainty as plants in the least volatile. We provide evidence suggesting that
idiosyncratic risk is higher in industries where the extent of creative destruction
is likely to be greater.
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1 Introduction

In this study we assess the cross–sectoral variation in the volatility of plant–level

idiosyncratic shocks in U.S. manufacturing. Our data consists of a large panel ex-

tracted from the Annual Survey of Manufacturers (ASM), gathered by the US Census

Bureau.

Our measure of volatility is the variation in Revenue Total Factor Productivity

(TFPR) which cannot be forecasted by means of factors, either known or unknown

to the econometrician, that are systematically related to plant dynamics. Variation

in TFPR reflects changes in technical efficiency, as well as shifts in input supply

and product demand schedules affecting input and product prices, respectively. We

strive to isolate the portion of such variation which is due to plant–specific, random

disturbances – a measure of idiosyncratic uncertainty, or risk.

Consistent with previous studies, we find that across the manufacturing sector id-

iosyncratic uncertainty accounts for the majority – about 80% – of overall plant–level

uncertainty. The variation in idiosyncratic risk across 3–digit industries is substan-

tial. To gain a flavor of the amount of heterogeneity we uncover, consider that the

volatility of TFPR growth due to idiosyncratic shocks ranges from 6.7% for producers

of leather soles to a whopping 35.2% for manufacturers of non–ferrous metals.

Why does volatility differ so much across sectors? We provide some preliminary

evidence in favor of a particular explanation: volatility is higher in sectors where cre-

ative destruction is more important. The notion of creative destruction is central to

the Schumpeterian paradigm. According to the latter, firms are engaged in a perpet-

ual race to innovate. Creation, i.e. the success by a laggard in implementing a new

process or producing a new good, displaces the previous market leader, eliminating

(destroying) its rent.

Formal models of Schumpeterian competition1 predict a positive cross–sectoral

association between creative destruction, product turnover, and innovation–related

activities. We document that idiosyncratic risk is higher in industries where product

turnover is greater and investment–specific technological progress is faster.

Our study of the statistical properties of TFPR is of central relevance to most

modern models of business dynamics, where TFPR is the most important, if not

the only driver of establishment growth and survival. See for example the seminal

work of Ericson and Pakes (1995) and Hopenhayn (1992), as well as the more recent

1We refer to the economic growth literature that builds on Aghion and Howitt (1992).
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information–based theories of Quadrini (2003) and Clementi and Hopenhayn (2006).

Establishment growth is driven by improvement in technical efficiency, increases in

mark–ups, and declines in input prices. Changes of the opposite sign lead plants to

shrink and, eventually, exit.

Learning about the volatility of the innovation to productivity is important in

light of the rather general result that, everything else equal, higher volatility implies

greater reallocation of inputs across plants and greater plant turnover. Over the last

25 years or so, a large number of cross–sectional studies have documented a wide

heterogeneity in the level of total factor productivity across plants. See Bartelsman

and Doms (2000) and Syverson (2011) for a very effective account of this literature.

A related body of work, closer to ours in spirit, studies the extent of cross–plant

variation in the growth of productivity. Davis and Haltiwanger (1992) and Davis,

Haltiwanger, and Schuh (1996) document the extent of within–sector job reallocation

across manufacturing plants, while Davis, Haltiwanger, Jarmin, and Miranda (2006)

describe the time variation in the volatility of business growth rates. Work by Bar-

telsman and Dhrymes (1998), Baily, Hulten, and Campbell (1992), Baily, Bartelsman,

and Haltiwanger (2001) and Foster, Haltiwanger, and Krizan (2001) shows that such

heterogeneity is accompanied by a substantial variation in productivity growth.

Our contribution to the literature is twofold. To start with, we strive to asses the

portion of volatility in plant–level TFPR growth that is due to merely idiosyncratic

shocks.

The logarithm of TFPR is modeled as a linear function of its lagged value, size,

age, a sector–time dummy variable that accounts for aggregate and industry–wide

disturbances, and an establishment–level dummy that stands in for plant unobserved

characteristics systematically associated with productivity dynamics. We regard the

residuals of this regressions as realizations of random shocks, and their standard

deviation as our measure of idiosyncratic risk.

Furthermore, we illustrate the cross–sectoral variation in plant–level idiosyncratic

shocks. We provide estimates of risk by 3–digit SIC sectors and make a first attempt

at identifying the determinants of the heterogeneity we uncover. As a by–product, our

exercise also produces estimates for the sector–specific auto–correlation coefficients of

TFPR.

Given that firms’ stakeholders have often limited insurance opportunities, assess-

ing establishment–level idiosyncratic risk is relevant for the analysis of scenarios where

risk aversion matters. This is the case of entrepreneurship studies such as Michelacci
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and Schivardi (2013), where idiosyncratic uncertainty hinders business creation via its

negative effect on the value of starting new ventures. In information–based theories

of economic development such as Castro, Clementi, and MacDonald (2004, 2009),

greater idiosyncratic risk is associated with lower capital accumulation via its neg-

ative effect on entrepreneurs’ ability to secure external finance for their investment

projects. Finally, idiosyncratic uncertainty is often cited among the factors restraining

innovative activity. See for example Caggese (2012).

The evidence of lack of risk diversification abounds. Herranz, Krasa, and Villamil

(2009) find that 2% of the primary owners of the firms sampled by the 1998 Survey of

Small Business Finance2 invested more than 80% of their personal net worth in their

firms; 8% invested more than 60%, and about 20% invested more than 40%. Clementi

and Cooley (2009) document that in 2006, more than 20% of CEOs of U.S. publicly–

traded concerns3 held more than 1% of their companies’ common stock. About 10%

held more than 5%. Given the large capitalization of such companies, this information

points to limited portfolio diversification for these individuals.

Understanding how idiosyncratic risk varies across industries is important because

the cross–sectoral heterogeneity in risk, when interacted with other features of the

economic environment, often generates restrictions on the data that are key to refute

economic models. Castro, Clementi, and MacDonald (2009) propose a multi–sector

model where incomplete risk–sharing induces cross–sectoral differences in the return

on investment in favor of lower–risk sectors. According to their theory, the differences

are larger, the poorer is risk–sharing. It turns out that, as long as sectors producing

investment goods are riskier than those producing consumption goods, their model

has a chance at rationalizing well–established evidence on the cross–country variation

of investment rate and the relative price of capital goods. This is a clear case in which

model falsification relies on the knowledge of the cross–sectoral variation in volatility.

In Cuñat and Melitz (2010), labor market regulations result in greater inefficien-

cies in sectors with greater idiosyncratic uncertainty. A testable implications is that

countries featuring lower institutional rigidity should specialize in higher–volatility

sectors. Once again, knowledge of the cross–sectoral variation of idiosyncratic risk is

needed in order to falsify their theory.

2The SSBF, administered by the Board of Governors of the Federal Reserve System, surveys a
large cross–sectional sample of non–farm, non–financial, non–real estate firms with less than 500
employees.

3The data is from EXECUCOMP, a proprietary database maintained by Standard & Poor’s that
contains information about compensation of up to 9 executives of all companies quoted in organized
exchanges in the U.S.
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Three other papers, by Abraham and White (2006), Gourio (2008), and Bachman

and Bayer (2013), share our goal of estimating processes for plant– or firm–level id-

iosyncratic shocks. Their data is from the U.S. Census’ LRD, Deutsche Bundesbank’s

USTAN, and Compustat, respectively. Beyond the data source, our work differs from

theirs on the emphasis we place on the cross–sectoral heterogeneity.4

We are not the first to document the extent of cross–sectoral variation in volatility.

However, data considerations limit the analysis of previous studies to the variation

of sales growth across large firms. See Chun, Kim, Mork, and Yeung (2008), Castro,

Clementi, and MacDonald (2009), and Cuñat and Melitz (2010).5 Our data has

other advantages. Given the sample size, it allows us to work with a very fine sector

classification. Furthermore, the sampling technique ensures that it is representative

of the population of manufacturing plants.

The remainder of the paper is organized as follows. The data and methodology

are described in Section 2. Our volatility estimates across 3–digit industries are illus-

trated in Sections 3. In Section 4 we provide evidence in support of the conjecture

that idiosyncratic risk is greater in industries where creative destruction is more im-

portant. In Section 5 we show that, consistent with what found by Castro, Clementi,

and MacDonald (2009) for public firms, plants that produce capital goods are sys-

tematically riskier than their counterparts producing consumption goods. Finally,

Section 6 concludes.

2 Data and Methodology

2.1 Data

We use the Annual Survey of Manufactures (ASM) and the Census of Manufacturers

for the years 1972 through 1997. Our unit of observation is the establishment, defined

as the minimal unit where production takes place, and our analysis is carried out at

the 3–digit SIC sectoral level, which maps into 4– and 5–digit NAICS. Depending on

the year, our data comprises from 50,000 to 70,000 establishments, distributed among

4Campbell, Lettau, Malkiel, and Xu (2001) are also concerned with assessing idiosyncratic risk.
Their proxy for the latter, however, is quite different. They decomposed the volatility of excess stock
returns in three components: aggregate, industry–wide, and firm–level. This allowed them to obtain
average measures of idiosyncratic risk for the whole economy and for several coarsely defined sectors.
Their methodology delivers reasonable proxies for the risk borne by equity investors, but not for that
faced by other stakeholders, such as the owners of small firms.

5In the cross–country study by Michelacci and Schivardi (2013), the proxy for risk is built following
the methodology of Campbell, Lettau, Malkiel, and Xu (2001).
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140 3–digit SIC manufacturing industries.

The ASM allows us (i) to compute reliable estimates of plants’ capital stocks,

which are needed to compute TFP indicators and, being a panel rather than a cross–

section, (ii) to use fixed effects to control for unobserved plant characteristics.

The main drawback is that our data is limited to manufacturing. The Census

Bureau’s Longitudinal Business Database (LBD) has a broader coverage. However,

since it does not contain information on capital stocks, it is not suited to computing

plant–level TFP.

2.2 Methodology

Our measure of productivity is known in the literature as real revenue per unit input,

or Revenue Total Factor Productivity (TFPR). Following Foster, Haltiwanger, and

Krizan (2001), Baily, Hulten, and Campbell (1992), and Syverson (2004a) among

others, the (log) TFPR for plant i in 3–digit sector j at time t is

ln zijt ≡ ln yijt − αk
ιt ln kijt − αℓ

ιt ln ℓijt − αm
ιt lnmijt, (1)

where yijt is real sales, kijt is capital, ℓijt is labor, and mijt is materials. Real sales

are the nominal value of shipments, deflated using the 4—digit industry–specific de-

flator from the NBER manufacturing productivity database. The details about the

estimation of the residuals in (1) are relegated to Appendix A.2.

The input elasticities are allowed to vary both over time and within 3–digit in-

dustries – the index ι denotes the plant’s 4–digit SIC code. This is important for our

results in Section 4, as it severely limits the concern that sectors characterized by

greater creative destruction display higher volatility in the residuals simply because

they are also characterized by greater unmodeled time and cross–plant variation in

the elasticities.

As effectively pointed out by Foster, Haltiwanger, and Syverson (2008), changes

in the TFPR indicator reflect fluctuations in productive efficiency, as well as shifts in

product demand and input supply schedules leading to updates in input and output

prices. This definition is well suited for our study, as we are interested in identifying

all sources of idiosyncratic uncertainty. Our objective is to estimate the volatility of

those innovations to TFPR that i) are plant–specific and ii) are not systematically

related to observable or unobservable plant characteristics.

We model TFPR as

ln zijt = ρj ln zij,t−1 + µi + δjt + βj ln(size)ijt +

3
∑

s=1

ψjsDijts + εijt. (2)
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The dummy variable µi is a plant–specific fixed effect that accounts for unobserved

persistent heterogeneity across plants. The variable δjt denotes a full set of sector–

specific year dummies, which control for sector–wide shocks and cross–sectoral differ-

ences in business cycle volatility. Size is measured by the number of employees. With

Dijts we denote three categories of age dummies: Young, Middle–Aged, and Mature.

We include size and age because both were shown to be negatively correlated with

plant growth.6

The objects of interest are the estimated residuals ε̂ijt, which we will interpret as

realizations of plant–specific shocks. An obvious caveat is that the residuals may also

reflect measurement error and predictable changes in TFPR not accounted for in (2).

This must be kept in mind when considering the magnitude of the volatility estimates

reported below.

Recall that our main goal is to charactere the extent to which the standard devi-

ation of such shocks varies across sectors. We satisfy our curiosity by fitting a simple

log–linear model to the variance of the residuals. We posit that

ln ε̂2ijt = θj + vijt, (3)

where θj is a sector–specific dummy variable. Letting θ̂j denote its point estimate, our

measure of the conditional standard deviation of TFPR growth for plants in sector j

is
√

γ̂ exp(θ̂j), where γ̂ is our estimate of the mean of the random variable exp(vijt).
7

In what follows, we will refer to it as volatility of TFPR growth or as idiosyncratic

risk.

3 Volatility Estimates

Our measure of idiosyncratic uncertainty across all manufacturing plants – obtained

by estimating (3) without sector dummies – is 20.53%. This figure is very close to

what implied by the findings of Foster, Haltiwanger, and Syverson (2008), and only

slightly higher than the value reported by Abraham and White (2006), 16.5%. Most

likely, this difference is accounted for by Abraham and White (2006)’s decision to

restrict attention to plants with more than 15 observations, decision that biases their

sample towards older and possibly less volatile establishments.

6See Hall (1987) and Evans (1987).
7If vijt were normally distributed, a consistent estimator of E [exp(vijt)] would be exp(σ̂2/2),

where σ̂2 is the variance of the residuals in (3). Since the normality assumption is easily rejected,
we estimated γ̂ by regressing the squared residuals on the exp of the fitted values generated by (3),
without a constant.
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We gauge the importance of idiosyncratic risk versus aggregate risk by computing a

more comprehensive measure of plant–level uncertainty, which also reflects the portion

that may be ascribed to industry–wide and economy–wide factors. Such measure is

obtained by means of the methodology introduced in the previous section, amended

to exclude the sector–year dummies δjt from the specification of (2).

Our point estimate for overall volatility is 26.16%. It follows that idiosyncratic

factors appear to account for about 80% of overall plant–level uncertainty. Consistent

with studies employing alternative methodologies, such as Campbell, Lettau, Malkiel,

and Xu (2001) and Bachman and Bayer (2013), we find that idiosyncratic risk is

substantially larger than aggregate risk.
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Figure 1: Histogram of idiosyncratic risk by sector.

Our volatility estimates across 3–digit industries are reported in Table 5 and

illustrated in the right panel of Figure 1, where sectors are sorted by the magnitude

of TFPR volatility. The height of each bin is the fraction of sectors whose estimated

risk falls in the associated interval.

The range of estimates is rather wide. The volatility is lowest for Boot and Shoe

Cut Stock (SIC 313), at 6.7%, and highest in Primary Smelting and Refining of
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Nonferrous Metals (357), at 35.2%.

As a by–product, our exercise also produces estimates for the sector–specific auto–

correlation coefficients of TFPR. Our values, reported in Table 5 and illustrated in the

right panel of Figure 2, can serve as guidance for the quantitative studies of industry

dynamics that model plant–level TFPR as a serially correlated stochastic process.

See for example Clementi and Palazzo (2013), Lee and Mukoyama (2009), and Khan

and Thomas (2008). The simple arithmetic means of the coefficients is 0.439, a value

very close to what reported by Abraham and White (2006).8
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Figure 2: Histogram of autocorrelation coefficients by sector.

3.1 Sales

For the purpose of comparison with the rather large literature focusing on sales

growth,9 we repeated our analysis substituting sales for TFPR in equation (2). The

mean standard deviation of the residuals across all manufacturing plants is 29.51%,

8When we weigh sectors by the value of shipments, the mean autocorrelation drops slightly, to
0.431.

9See for example Davis, Haltiwanger, Jarmin, and Miranda (2006).
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larger than above. This is likely to be the case because the scale of production reacts

to shocks, no matter their nature, amplifying their impact on sales.

The range of sectoral estimates is also wider than for TFPR. See Table 5. The

lowest volatility is also attained in the Boot and Shoe Cut Stock sector (313), with

11.3%, while the highest pertains to Railroad Equipment (374), with 53.7%. The

orderings delivered by the TFPR and sales measures are fairly consistent, but not

quite the same. The Spearman’s rank–correlation coefficient is 0.66.

3.2 Censoring

Since we do not explicitly account for exit selection, one may wonder whether the

cross–sectoral variation in volatility that we uncover were simply the result of cen-

soring. Say that the standard deviation of shocks were the same across industries,

but plants in different sectors were burdened by different fixed costs of operation. In

most models of industry dynamics, the selection induced by such heterogeneity would

generate cross–sectoral difference in measured volatility.

To assess the likelihood that the cross–sectoral variation we uncover is indeed

the result of differences in cost structure, consider the model introduced by Hopen-

hayn (1992). In that framework, under very general conditions, sectors characterized

by higher fixed costs will feature higher exit thresholds (in TFPR space) and lower

measured volatility, but also higher exit rates.

Using data from the Statistics of US Businesses Database gathered by the US Cen-

sus Bureau, we computed exit rates across 3–digit SIC industries and plotted them

against our volatility estimates.10 See Figure 3. On average, more volatile industries

tend to display higher exit rates. This finding suggests that the cross–sectoral hetero-

geneity that we uncover cannot be simply the result of censoring. However, we cannot

rule out that censoring indeed biases our estimates, possibly affecting the ranking of

sectors by volatility.11

4 Creative Destruction and Volatility

Why does volatility differ so much across sectors? In this section, we look for evidence

in favor of a particular explanation: volatility is higher in sectors where the speed

and extent of creative destruction are greater.

10Exit rates refer to 1997, the only year in which SUSB and our dataset overlap.
11In his study of the ready–mixed concrete industry, Syverson (2004a) finds that markets with

denser construction activity have higher lower-bound productivity levels. This heterogeneity has an
obvious impact on the measures of productivity dispersion across markets.
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Figure 3: Volatility and Exit Rates.

Joseph Schumpeter envisioned economic progress as the result of a perpetual race

between innovators. Success by a laggard or an outsider in implementing a new

process or producing a new good, provides them with a competitive advantage and

displaces the previous market leader, eliminating its rent. This, in a nutshell, is the

process of creative destruction.12

We conjecture that most of the plant–level volatility that we document reflects

the turnover between market participants which is at the center of Schumpeter’s

paradigm. That is, we argue that a large fraction of the fluctuations in a plant’s

TFPR is due to variations in its distance from the technology frontier.

Our strategy consists in looking for sector–specific attributes that are likely to

be systematically associated with the speed of turnover. Starting with Aghion and

Howitt (1992), Schumpeter’s idea was formalized in a large number of models. We

turn to this literature for guidance.

In Aghion and Howitt (1992), the producer endowed with the leading technol-

12According to this definition of creative destruction, the elimination of its rent will lead the
previous leader to exit from a specific product market, but not necessarily to cease operations.
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ogy monopolizes the intermediate good market. Technology improves as a result of

purposeful research and development, which in equilibrium is only carried out by

prospective entrants. When it succeeds in obtaining a new and more productive vari-

ety of intermediate good, the innovator enters and displaces the monopolist. It follows

that all the variation in TFPR is associated with product turnover.

The positive association between product turnover and plant–level volatility is

not specific to Aghion and Howitt (1992). Rather, it is a robust feature of all of

its generalizations in which intermediate goods of different vintages are vertically

differentiated. For example, see Aghion, Harris, Howitt, and Vickers (2001) and

Aghion, Bloom, Bludell, Griffith, and Howitt (2005).

The race can also be among plants that are not directly engaged in R&D, but adopt

components which embed innovations made by others. This is the scenario described

by Copeland and Shapiro (2013), who model the personal computers industry. The

adoption decision, which entails the introduction of a new product, leads to a rise in

sales for the adopter, and to a decline for its competitors.

In Samaniego (2009), the decision that yields a competitive advantage is that of

acquiring the latest vintage of equipment. The faster is investment–specific techno-

logical change, the more frequent is technology adoption by either laggards or new

entrants. In turn, this leads to a more frequent turnover in industry leadership and

more variability in both sales and TFPR.13

In the next section, we ask whether product turnover is indeed higher in industries

where plants are documented to face a greater volatility of TFPR. In Sections 4.2 and

4.3 we will ask whether across sectors our volatility measure is positively related

with the intensity of R&D and the speed of investment–specific technological change,

respectively.

It should be clear that our methodology cannot establish causality. Our – more

limited – goal is to establish whether simple unconditional correlations are consistent

with our conjecture on the origin of the cross–sectoral variation in volatility that we

uncover.

4.1 Product Turnover

The U.S. Bureau of Labor Statistics collects prices on 70,000–80,000 non–housing

goods and services from around 22,000 outlets across various locations. When a

13Obviously R&D and investment-specific technical change may be – most likely are – vertically
related. This is the case because an innovation generated by R&D may turn profitable only when
embodied in new capital. See Lach and Rob (1996).
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product is discontinued, the agency starts collecting prices of a closely related good

at the same outlet, and records the substitution information. The BLS classifies goods

in narrowly–defined categories known as entry–level items (ELI).

Our proxy for turnover is the average monthly frequency of substitutions, known

as the item substitution rate. It is the fraction of goods in the ELI that are replaced on

average every month. Our data is drawn from Bils and Klenow (2004)’s tabulations,

which in turn are based on information on more than 300 consumer good categories

from 1995 to 1997.14

Using the algorithm developed by Chang and Hong (2006), we were able to match

each one of 59 3–digit SIC manufacturing sectors with at least one ELI. For 21 sectors,

the correspondence is one–to–one. The remaining 38 are matched to several among

213 items. In such cases, we defined the substitution rate as the average of the

associated ELIs’ rates, weighted by their respective CPI weights.

Two caveats are worth mentioning. To start with, the BLS data focuses on con-

sumer goods. Most investment good sectors are missing. Furthermore, the substi-

tution rate only tells about the frequency of product turnover and does not provide

information about the size of the step, i.e. the extent to which a new product improves

over the pre–existing one.

The scatter plot in Figure 4 shows that our proxy for product turnover is positively

associated with TFPR volatility. The sample correlation coefficient is 0.43.

Three sectors stand out, as they are characterized by high volatility and re-

markably high substitution rates. They are Computer and Office Equipment (357),

Women’s and Misses’ Outerwear (233), and Girls’ and Children’s Outerwear (236).

Anecdotal evidence as well as scholarly research15 suggest that SIC 357 epitomizes

the idea of creative destruction. However, product turnover in the other two sectors

is not likely to be driven by technological improvements.

Idiosyncratic risk and turnover are positively associated even when we exclude

SIC 233, 236, and 357. However, the correlation coefficient drops to 0.08.16

The last two columns in Table 1 report the results of regressing TFPR volatility

on the average substitution rate and a constant. Column 3 tells us that on average,

14The BLS distinguishes between two types of substitutions. Substitutions are comparable when
the replacement does not represent a quality improvement over the previous item. They are non-
comparable, otherwise. Since average and noncomparable average item substitution rates are highly
correlated across good categories, our results did not change much when we used non–comparable
item substitution rates instead.

15See Copeland and Shapiro (2013) and citations therein.
16For sales volatility, the correlation coefficient is 0.45. Without SIC 233, 236, and 357, it drops to

0.32.

12



201

202

203

204

205

206

207

208

209

225

227

231
232

233

234

236238

239

243

251

259

267

271272

273

283

284

285

289

291

295

299
301

308

314

316322

326

342

343

352

357

358

363

364

365

366 371

373

384

385

386

387

391

393

394

395

399

.15

.2

.25

.3

.35

.4

.45
S

al
es

 V
ol

at
ili

ty

0 5 10 15 20
Average item substitution rate

Raw correlation: 0.45; (excluding 233,236,357): 0.32.

201202

203

204
205

206

207

208

209

225

227

231232

233

234

236
238

239
243

251

259

267271

272
273

283

284

285

289

291

295

299301
308

314

316

322

326

342343

352

357

358

363

364

365
366

371

373
384

385

386

387

391

393

394

395

399

.15

.2

.25

.3

.35

.4

.45

T
F

P
R

 V
ol

at
ili

ty

0 5 10 15 20
Average item substitution rate

Raw correlation: 0.43; (excluding 233,236,357): 0.08.

Figure 4: Idiosyncratic Risk and Product Substitution Rate.

a 1 percentage point higher substitution rate implies a 0.48 percentage point higher

TFPR volatility. Without SIC 233, 236, and 357 (see column 4), the coefficient

becomes insignificant.17

Some establishments in the ASM are likely to produce more than one product.

Possibly, many more. As long as the correlation between sales from different lines of

business is less than 1, plant–level sales volatility will be lower than average volatility

at the level of product line. This may explain why sectors such as Glass and Glassware

(322), Books (273), and Household Furniture (251) are characterized by a relatively

high item substitution rate and low volatility of TFPR.

4.2 R&D Intensity

Unfortunately we lack data on research and development expenditure in the ASM.

We measure a sector’s research intensity as the ratio of R&D expenditure to sales

in COMPUSTAT. The latest CENSUS–NSF R&D survey found that most of the

17Our standard errors of this and the following sections have been computed by a bootstrap pro-
cedure aimed at addressing the generated regressor problem.
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Table 1: Idiosyncratic Risk and Product Substitution Rate.

Dependent Variable: Sales Volatility TFPR Volatility

(1) (2) (3) (4)

Substitution Rate 0.0076∗∗∗ 0.0085∗∗ 0.0048∗∗∗ 0.0013
(0.0022) (0.0037) (0.0018) (0.0025)

Constant 0.2581∗∗∗ 0.2549∗∗∗ 0.1889∗∗∗ 0.2008∗∗∗

(0.0123) (0.0157) (0.0091) (0.0106)

Observations 58 55 58 55
R2 0.2060 0.1003 0.1877 0.0062

Bootstrap standard errors in parenthesis.
∗∗∗Significant at 1%. ∗∗Significant at 5%. ∗Significant at 10%.

Specifications in columns (2) and (4) exclude SIC 233, 236, and 357.

research and development activity takes place at large firms. This leads us to think

that the cross–sectoral variation in R&D expenditures in the population is not likely

to differ much from that for large, public firms.

The cross–industry variation in research expenditures that we uncover is substan-

tial. Our measure of research intensity varies from 0.022% for Book Binding (SIC

278) to 7.77% for firms in Drugs (283).

The unconditional relationship between our risk proxy and research intensity is

illustrated in Figure 5. In Table 2 we report the results of regressing volatility on

R&D intensity and a constant. In the case of TFPR, the coefficient of R&D intensity

Table 2: Idiosyncratic Risk and Research Intensity.

Dependent Variable: Sales Volatility TFPR Volatility

R&D Intensity 0.4359 0.7509∗∗∗

(0.3467) (0.2246)

Constant 0.2832∗∗∗ 0.1918∗∗∗

(0.0084) (0.0055)

Observations 115 115
R2 0.0129 0.0865

Bootstrap standard errors in parenthesis.
∗∗∗Significant at 1%. ∗∗Significant at 5%. ∗Significant at 10%.

is statistically and economically significant. A 1 percentage point increase in research

intensity implies an increase in volatility of about 0.75 percentage points.
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Figure 5: Idiosyncratic Risk and R&D.

Since Grilliches (1979), the relation between R&D and productivity has been

the object of interest for a large number of studies. The results described above

are consistent with recent findings by Doraszelski and Jaumandreu (2013). For a

large sample of Spanish manufacturing firms, they establish that engaging in R&D

introduces uncertainties in the productivity process that would be absent otherwise.

4.3 Investment–Specific Technological Change

In a simple two–sector model where investment and consumption goods are produced

competitively, the quality improvement in the investment good equals the negative

of the change in its relative price. Exploiting this restriction, Cummins and Violante

(2002) computed time series of quality improvement – or technological change – for

a variety or equipment goods over the period 1948–2000.

Using detailed data on capital expenditures by 2–digit SIC industries provided

by the Bureau of Economic Analysis, Cummins and Violante (2002) also constructed

measures of investment–specific technological change by sector. In this section we ask

whether such measures are systematically related to our proxies for risk.

15



20

21

22

23

24

25

26

27

28

29

30

31

32

3334

35

36

38

39

.1

.15

.2

.25

.3

.35

.4
S

al
es

 V
ol

at
ili

ty

.025 .03 .035 .04 .045 .05
Investment−specific technical change

Raw correlation (excluding 27): 0.39.

20
21

22

23

24

25

26

27

28

29

30

3132
3334

3536

38

39

.1

.15

.2

.25

.3

.35

.4

T
F

P
R

 V
ol

at
ili

ty

.025 .03 .035 .04 .045 .05
Investment−specific technical change

Raw correlation (excluding 27): 0.47.

Figure 6: Idiosyncratic Risk and Investment–Specific Technological Change.

Given the level of aggregation in the data on technological change, our analysis

is confined to 18 2–digit SIC sectors, listed in Table 6. For each industry, the rate of

technological change is the average of the 1948–1999 annual time–series underlying

Figure 2 in Cummins and Violante (2002), provided to us by Gianluca Violante. The

risk proxies are weighted averages of the volatility estimates for the 3–digit SIC sectors

that belong to the industry. The weights are the values of the average share of each

three-digit sector’s value of shipments in the corresponding 2–digit sector.18

The scatter plots in Figure 6 suggest a positive association between the two vari-

ables of interest. Sectors such as SIC 35 (Industrial and Commercial Machinery and

Computer Equipment) and 31 (Leather and Leather Products) display high volatility

and high investment–specific technological change. SIC 30 (Rubber and Miscella-

neous Plastic Products), which ranks among the last sectors in terms of technological

change, is also among the least uncertain.

The magnitude and statistical significance of the correlation coefficients depends

18The averages are computed from the NBER manufacturing database, which covers the 1958-1997
period.
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Table 3: Idiosyncratic Risk and Investment–Specific Technological Change.

Dependent Variable: Sales Volatility TFPR Volatility

ISTC 2.1817∗ 2.0579∗∗

(1.2389) (0.8321)

Constant 0.2122∗∗∗ 0.1266∗∗∗

(0.0491) (0.0317)

Observations 18 18
R2 0.1510 0.2215

Bootstrap standard errors in parenthesis.
∗∗∗Significant at 1%. ∗∗Significant at 5%. ∗Significant at 10%.

Note: SIC 27 excluded.

on an outlier observation, SIC 27 (Printing and Publishing). Given the small number

of data–points, this is not surprising. Unfortunately we were not able to make sense

of the finding that plants mostly engaged in the printing and publishing of books,

periodicals, and newspapers experienced the fastest investment-specific technological

progress.

When we exclude SIC 27, the raw correlation between TFPR volatility and investment–

specific technological change is 0.47, significant at the 5% confidence level. When we

include the outlier, the correlation drops to 0.28, not statistically significant at the

10% level.19

Table 3 reports the results of regressing our proxies for idiosyncratic risk on a

constant and the estimated speed of investment–specific technological change. When

we drop SIC 27, a 1 percentage point increase in ISTC growth is associated with a

2.1 percentage point increase in TFPR volatility. The estimate is significant at the

5% level.

5 Consumption Vs. Investment Goods

Castro, Clementi, and MacDonald (2009) argued that in COMPUSTAT firms pro-

ducing investment goods are significantly riskier than firms producing consumption

goods. Does this pattern also hold across manufacturing plants in the ASM?

We classify industries as either consumption– or investment good–producing, based

on the 1992 BEA’s Use Input–Output Matrix. For every sector, the Use Matrix re-

ports the fractions of its output that reach all other sectors as input, as well as the

19With sales volatility, the correlations are 0.39 and 0.02 without and with SIC 27, respectively.
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portions that meet final demand uses.

For each 3–digit SIC industry, we compute the output share whose ultimate des-

tination is either consumption or investment. We label an industry as “consumption”

or “investment” if a sufficiently large share of its production ultimately meets a de-

mand for consumption or investment, respectively. The outcome of our assignment

procedure is in Table 5.20 The details of the algorithm are in Appendix A.3.
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Figure 7: Volatility of sales and TFPR per 3–digit industry.

Figure 7 suggests a clear tendency for investment good sectors to be among the

most volatile, no matter the proxy for risk. The height of each bar reflects the volatility

of one 3–digit sector.

Computer equipment is the second most volatile sector. Only two investment–

good sectors – Wood Buildings (245) and Stone Products (328) – are among the

bottom 33 sectors in the ranking.

Formal tests confirm that on average investment–good producing plants are indeed

20Consumption goods are further classified as durable or non–durable.
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more volatile. We run the following regression:

ln ε̂2ijt = α+ θC + uijt, (4)

where α is a constant and θC is a dummy variable which takes value 1 if firm i

produces consumption goods and is zero otherwise. The average volatility is 21.63%

in investment good sectors and 19.39% in consumption good industries. We can reject

the hypothesis that the two estimates are equal at the 1% confidence level.21

Table 4: Idiosyncratic Risk and Durability

Dependent Variable: Sales Residual TFPR Residual

Non-Durable Cons. Dummy –0.3287∗∗∗ –0.0782∗∗∗

(0.0201) (0.0196)

Durable Cons. Dummy –0.2011∗∗∗ –0.1837∗∗∗

(0.0326) (0.0306)

Constant –4.4015∗∗∗ –5.1037∗∗∗

(0.0142) (0.0134)

Observations 322,269 322,269

Standard errors in parenthesis. ∗∗∗Significant at 1%. ∗∗Significant at 5%. ∗Significant at 10%.

At business–cycle frequencies, the difference in volatility between aggregate con-

sumption and investment expenditures is mostly driven by the difference in durability

between the two good categories. In fact, expenditures on durable consumption goods

are almost as volatile as investment expenditures.22 Does a similar pattern emerge

at the plant level?

To test whether volatility co–varies systematically with durability, we run the

regression

ln ε̂2ijt = α+ θD + θND + uijt, (5)

where θD and θND are dummy variables that equal 1 if the firm produces durable or

non–durable consumption goods, respectively.

We classify consumption goods as durable if they have a service life of 3 years

or more, and nondurable otherwise. The service life data is from Bils and Klenow

(1998). We drop sectors for which they do not provide information. The details of

21With sales growth, the mean volatility among investment good–producing plants is 32.71%, while
for consumption good–producing plants it is 27.32%. The difference is also statistically significant.

22See Stock and Watson (1999).
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the assignment procedure are in Appendix A.4. The regression’s results are reported

in Table 4.

The point estimates suggest that TFPR volatility may actually be greater for

non–durables than for durables. However, once we transform the regression coeffi-

cients to obtain the actual volatility estimates, we find that TFPR volatility is not

statistically different across establishments producing durable and non–durable con-

sumption goods. The bottom line is that we find no evidence in support of the claim

that durability is the reason why investment–good producing plants bear a greater

idiosyncratic risk than plants producing consumption goods.

6 Conclusion

In the recent but fast growing theoretical literature on establishment dynamics, het-

erogeneity in outcomes is often driven by idiosyncratic shocks to technical efficiency,

mark–ups, and input prices. This paper makes some progress towards understanding

the magnitude and cross–sectoral variation of such disturbances.

Using a large panel representative of the entire US manufacturing sector, we found

that idiosyncratic risk accounts for about 80% of the overall uncertainty faced by

plants. We also showed that risk varies greatly across 3–digit sectors, ranging from

6.7% for producers of boot and shoe cut stock, to 35.2% for Primary Smelting and

Refining of Nonferrous Metals.

We propose that the heterogeneity in idiosyncratic risk is driven by the differ-

ential extent to which creative destruction shapes competition across sectors. For-

mal models of Schumpeterian competition imply a positive correlation between the

speed of technological progress, product turnover, and volatility in plant–level out-

comes. We provide evidence in support of these predictions. In particular, our proxy

for idiosyncratic risk is positively associated with measures of product turnover and

investment–specific technological change.

We acknowledge that our evidence is only suggestive. Our conjecture passed a

first test, but establishing causality requires a different methodological approach.

Other factors are likely to contribute to the heterogeneity that we document.

Syverson (2004b) outlines a variety of sectoral characteristics that may be related to

measures of within–sector dispersion in productivity levels. In most models of firm

dynamics, many of those characteristics would also impact the dispersion productivity.

For sure, this is the case for the parameters that drive entry and exit.
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A Data and Measurement

A.1 Sample Construction

We start by extracting all plants in the ASM panels from 1972 to 1997. For the Census

years, we use the ASM flag variable to select from the Census files the plants belonging

to the ASM panels. To avoid measurement errors from the imputed variables, we

follow most of the economics literature in dropping Administrative Record (AR) files.

We also drop establishments with zero or missing value for employment, or shipments,

or any variable needed for our estimation, such as the total cost of materials, capital

expenditures on buildings or machinery, and production worker hours.

The ASM is a series of five–year panels. In the first years of the panels, the fraction

of plants that can be linked longitudinally to the previous year drop dramatically as

only large, continuing plants ( the so–called certainty cases) are included in adjacent

panels. To avoid measurement issues due to panel rotation, we drop from the sample

all first years of the panels.

When estimating equation (2), we drop plants with less than five observations in

the sample to avoid that mis–measurement of the plant fixed effects propagate to the

residuals. An increase in the cutoff did not change the key results of the paper in any

appreciable way.

When estimating equation (3), we exclude sectors with less than 100 plant–year

observations. This is to guarantee that the results are not driven by a relatively small

number of plants in the sector.

We will make SAS and STATA programs available to researchers with access to

the Census micro data, so that they can replicate the results reported in the paper.

A.2 Variable Definitions

Real Sales. We use the total value of shipments (TVS) deflated by the 4–

digit industry-specific shipments deflator from the NBER manufacturing productiv-

ity database. Although it is possible to adjust total shipments for the change in

inventories, we follow Baily, Bartelsman, and Haltiwanger (2001) and choose to use

the simple measure of gross output. This is to avoid potential measurement issues

associated with imputations of inventories.

Capital. We follow Dunne, Haltiwanger, and Troske (1997) closely in construct-

ing capital stocks. The approach is based on the perpetual inventory method. We

define the initial capital stock as the book value of structures plus equipment, deflated
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by the BEA’s 2–digit industry capital deflator. In turn, book value is the average of

beginning-of-year and end-of-year assets. The investment series are from the ASM,

deflated with the investment deflators from the NBER manufacturing productivity

database (Bartelsman and Gray, 1996). 2–digit depreciation rates are also obtained

from the BEA.

Labor input. The labor input is measured as the total hours of production and

nonproduction workers. Since the latter are not actually collected, we follow Baily,

Hulten, and Campbell (1992) in assuming that the share of production worker hours

in total hours equals the share of production workers wage payments in the total wage

bill.

Materials. The costs of materials are deflated by the material deflators from the

NBER manufacturing productivity database.

Factor Elasticities. Under constant returns to scale and the usual regularity

conditions, cost minimization implies that each input’s elasticity equals its share in

total production cost. Therefore our ideal estimate of factor elasticity was the industry

average cost share at the finest level of aggregation. Unfortunately capital rental rates,

which are needed to compute capital costs, are only available at the 2–digit level.

Following that route would have introduced a mis–specification error with potentially

large consequences on our residuals’ estimates.

Our solution was to set elasticities for labor and materials equal to their respective

4–digit industry–level revenue shares. The capital elasticity is set equal to the com-

plement to 1, i.e. αk
ιt = 1− αl

ιt − αm
ιt . We use the average of revenue shares between

adjacent time periods (i.e., discrete–time approximation to the Divisia index, derived

from the Tornqvist index). This allows factor elasticities to vary over time.

Notice that cost shares and revenue shares coincide only when mark-ups are iden-

tically zero. In any other scenario, mis–specification is still a concern. Our view is

that, however, the resulting bias is substantially lower than in the alternative de-

scribed above.

In calculating labor costs, we follow Bils and Chang (2000) and adjust each 4–digit

industry’s wage and salary payments by a factor that captures all the remaining labor

payments, such as fringe benefits and employer Federal Insurance Contribution Act

(FICA) payments. This factor is based on information from the National Income and

Product Accounts (NIPA), and corresponds to one plus the ratio of the additional

labor payments to wages and salaries at the 2–digit industry level. We apply the same

adjustment factor to all plants within the same 2–digit industry.
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ASM sample weights. We use the ASM sample weights for all plant–level

regressions, which render the ASM a representative sample of the population of man-

ufacturing plants (Davis, Haltiwanger, and Schuh, 1996).

A.3 Definition of Consumption and Investment Categories

To assign sectors to the consumption and investment categories, we rely on the Bureau

of Economic Analysis’ (BEA) 1992 Benchmark Input–Output Use Summary Table

(before redefinitions) for six–digit transactions. The 1992 Use Table is based on the

1987 SIC system, and thus compatible with the ASM.

The Use Table gives the fraction of output that each three–digit sector supplies

to every other three–digit industry, as well as directly to final demand uses. The final

demand uses correspond to NIPA categories. For each three–digit industry j, we de-

fine its final demand for consumption C(j) as the sum of personal, federal, and state

consumption expenditures. The final demand for investment I(j) is defined analo-

gously. We exclude imports, exports, and inventory changes from our definitions,

since they are not broken down into consumption and investment. Let C and I de-

note the vectors of all the industries’ final consumption and investment expenditures,

respectively.

From the Use Table, we also compute the (square) matrix A of unit input–output

coefficients. This matrix can be easily constructed from the original Use Input–Output

Matrix by normalizing each row by the total commodity column. We can then define

the vectors of all the industries’ total consumption and total investment output by

YC = AYC + C ⇔ YC = (I −A)−1 C

and

YI = AYI + I ⇔ YI = (I −A)−1 I,

respectively. This means that each industry’s consumption goods output also includes

all the intermediate goods whose ultimate destination is final consumption. Similarly,

for investment.

For each three–digit industry j, we compute the share of output destined to con-

sumption, YC(j)/ (YC(j) + YI(j)). We then assign all industries with a share greater

than or equal to 60% to the consumption good sector, and those with a share lower

than or equal to 40% to the investment good sector. We do not assign a consump-

tion/investment good classification to the remaining industries (these industries do

not receive a good classification in the last column of Table 5).
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We also discard industries whose primary role is supplying intermediate inputs to

other industries. That is, we drop three–digit industries which contribute less than

1% of their total output directly to final consumption and investment expenditures.

A.4 Definition of Durable and Nondurable Consumption Categories

When splitting consumption sectors between durable and nondurable, we follow Bils

and Klenow (1998). Table 2 of their study reports the service life of 57 consumption

good items (those in the Consumer Expenditure Surveys that closely match 4–digit

SIC sectors). Their estimates are either based upon life expectancy tables from in-

surance adjusters, or upon the Bureau of Economic Analysis publication Fixed Re-

producible Tangible Wealth, 1925–1989.

We classify goods as either durable on nondurable, depending on whether their

expected lives are longer or shorter than 3 years. We classify each three–digit sector

as producing durables or nondurables, according to the weighted average of its 4–

digit sub–sectors’ expected lives. Finally, we do not assign a durable/nondurable

consumption classification to three–digit sectors that are not considered in Bils and

Klenow (1998) (these sectors with no service life information are labeled as “Other

Consumption” in last column of Table 5).

B Tables

Table 5: Volatility and Autoregressive Parameter Estimates

SIC TFPR Sales Good Classification

Volatility AR Volatility AR

333 Primary Nonferrous Metals 0.352 0.483 0.404 0.644
357 Computer Equipment 0.314 0.548 0.414 0.672 Investment
348 Small Arms & Ammo 0.312 0.491 0.429 0.489 Durable Consumption
233 Women’s Outerwear 0.295 0.464 0.380 0.599 Other Consumption
287 Agricultural Chemicals 0.293 0.420 0.351 0.567 Other Consumption
283 Drugs 0.279 0.542 0.273 0.742 Nondurable Consumption
241 Logging 0.278 0.422 0.381 0.510
385 Ophthalmic Goods 0.273 0.427 0.338 0.561 Durable Consumption
281 Industrial Inorganic Chems 0.270 0.411 0.306 0.494 Other Consumption
236 Girls’ Outerwear 0.265 0.475 0.345 0.642 Nondurable Consumption
393 Musical Instruments 0.264 0.132 0.301 0.115 Durable Consumption
232 Men’s Clothing 0.260 0.496 0.343 0.566 Nondurable Consumption
238 Misc. Apparel 0.260 0.456 0.348 0.604 Other Consumption
231 Men’s Suits & Coats 0.256 0.534 0.353 0.687 Durable Consumption
235 Hats & Caps 0.255 0.392 0.294 0.588 Other Consumption
367 Elect Components & Acces 0.253 0.554 0.339 0.761
277 Greeting Cards 0.252 0.661 0.232 0.682 Other Consumption
373 Ship&Boat Build&Repair 0.248 0.375 0.452 0.541
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Table 5: (continued)

SIC TFPR Sales Good Classification

Volatility AR Volatility AR

311 Leather Finishing 0.248 0.269 0.308 0.455 Other Consumption
207 Fats & Oils 0.248 0.312 0.339 0.456 Nondurable Consumption
284 Detergents & Cosmetics 0.245 0.432 0.300 0.577 Nondurable Consumption
394 Dolls, Toys, & Games 0.242 0.364 0.359 0.577 Durable Consumption
376 Guided Missiles, Space Vcl 0.242 0.450 0.358 0.558
365 Household Audio-Video Eq 0.241 0.366 0.347 0.646 Durable Consumption
209 Misc. Food 0.241 0.486 0.285 0.582 Nondurable Consumption
382 Measuring Instruments 0.240 0.390 0.263 0.594 Investment
384 Medical Instr & Supplies 0.239 0.455 0.273 0.649
381 Navigation Equipment 0.236 0.372 0.305 0.515 Investment
366 Communication Equipment 0.236 0.441 0.329 0.610 Investment
242 Sawmills & Planing Mills 0.235 0.304 0.331 0.592
324 Cement, Hydraulic 0.235 0.579 0.263 0.629 Investment
374 Railroad Equipment 0.235 0.267 0.537 0.311 Investment
321 Flat Glass 0.234 0.210 0.315 0.221 Other Consumption
234 Women’s Underwear 0.232 0.525 0.294 0.705 Nondurable Consumption
214 Tobacco Stemming 0.232 0.339 0.417 0.744 Other Consumption
295 Asphalt Paving & Roofing 0.230 0.295 0.410 0.447
326 Pottery & Related Prods 0.230 0.446 0.297 0.515
359 Industrial Machinery 0.230 0.330 0.326 0.616
317 Handbags 0.230 0.550 0.337 0.802 Other Consumption
386 Photo Equip and Supplies 0.228 0.517 0.268 0.580
329 Misc Nonmetal Mineral Prod 0.227 0.480 0.292 0.650
259 Misc. Furniture 0.227 0.302 0.295 0.647 Investment
286 Organic Chemicals 0.224 0.457 0.294 0.560 Other Consumption
208 Beverages 0.221 0.518 0.257 0.582 Nondurable Consumption
344 Metal Products 0.220 0.393 0.358 0.523 Investment
354 Metalworking Machinery 0.218 0.400 0.300 0.516 Investment
399 Misc Manufactures 0.216 0.100 0.331 0.196
225 Knitting Mills 0.215 0.460 0.342 0.595 Nondurable Consumption
226 Dyeing Textiles 0.215 0.602 0.324 0.692 Other Consumption
372 Aircraft and Parts 0.214 0.498 0.263 0.581
203 Canned Fruits & Vegtbls 0.212 0.458 0.296 0.588 Nondurable Consumption
339 Misc Primary Metal Prods 0.212 0.529 0.282 0.603
369 Electrical Equipment 0.210 0.443 0.306 0.591 Other Consumption
353 Construction & Mining 0.208 0.492 0.376 0.583 Investment
206 Sugar 0.207 0.356 0.272 0.604 Nondurable Consumption
363 Households Appliances 0.207 0.501 0.343 0.625 Durable Consumption
289 Misc. Chemicals 0.205 0.479 0.262 0.588 Other Consumption
327 Concrete & Plaster 0.204 0.414 0.308 0.574 Investment
252 Office Furniture 0.204 0.313 0.264 0.559 Investment
314 Footwear 0.203 0.539 0.328 0.639 Nondurable Consumption
391 Jewelry & Silverware 0.201 0.528 0.283 0.713 Durable Consumption
279 Services for Printing 0.201 0.418 0.238 0.759 Other Consumption
325 Clay Products 0.199 0.477 0.265 0.545 Investment
352 Farm Machinery 0.198 0.374 0.350 0.466 Investment
355 Special Industry Machinery 0.198 0.366 0.298 0.561 Investment
239 Misc. Textiles 0.197 0.474 0.313 0.744 Other Consumption
347 Metal Services 0.196 0.344 0.253 0.663
356 General Industry Machinery 0.194 0.417 0.270 0.551 Investment
274 Misc. Publishing 0.193 0.499 0.188 0.708 Durable Consumption
229 Misc. Textile Goods 0.193 0.481 0.275 0.664 Other Consumption
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Table 5: (continued)

SIC TFPR Sales Good Classification

Volatility AR Volatility AR

364 Elec. Lighting and Wiring 0.193 0.490 0.263 0.610
362 Electrical Apparatus 0.193 0.441 0.268 0.639 Investment
396 Buttons & Needles 0.192 0.482 0.374 0.726 Other Consumption
308 Misc. Plastic Prods 0.191 0.403 0.279 0.568 Other Consumption
351 Engines & Turbines 0.191 0.502 0.294 0.582
379 Misc. Transportation 0.189 0.371 0.401 0.605 Durable Consumption
205 Bakery Products 0.188 0.403 0.222 0.655 Nondurable Consumption
272 Periodicals: Publishing 0.188 0.597 0.157 0.696 Nondurable Consumption
254 Shelving & Lockers 0.188 0.465 0.289 0.617 Investment
361 Electr. Distrib. Equipment 0.187 0.525 0.265 0.710 Investment
243 Millwork 0.186 0.447 0.281 0.590 Investment
387 Watches, Clocks 0.185 0.383 0.333 0.839 Durable Consumption
332 Iron & Steel Foundries 0.185 0.629 0.303 0.719
345 Screw Machine Prods, Bolts 0.184 0.442 0.245 0.677
282 Plastic Materials 0.183 0.455 0.261 0.559 Other Consumption
336 Nonferrous Foundries 0.183 0.460 0.263 0.676
334 Secondary Nonferrous Mat 0.182 0.357 0.389 0.596
371 Motor Vehicles and Equip 0.181 0.361 0.326 0.474
349 Misc Fabricated Metal Prod 0.181 0.481 0.266 0.609
316 Luggage 0.180 0.398 0.232 0.613 Durable Consumption
301 Tires 0.180 0.440 0.266 0.516 Nondurable Consumption
358 Refrigeration Machinery 0.180 0.392 0.287 0.551 Investment
299 Misc. Petroleum 0.179 0.531 0.272 0.621 Nondurable Consumption
261 Pulp Mills 0.179 0.338 0.226 0.349 Other Consumption
335 Nonferrous Rolling & Draw 0.179 0.504 0.295 0.611
204 Grain Mill Products 0.178 0.289 0.264 0.474 Nondurable Consumption
273 Books 0.177 0.595 0.181 0.696 Durable Consumption
331 Blast Furnace & Steel Prd 0.176 0.396 0.275 0.459
278 Bookbinding 0.176 0.495 0.207 0.755 Other Consumption
221 Cotton Fabric 0.175 0.328 0.263 0.663 Other Consumption
212 Cigars 0.175 0.657 0.259 0.771 Nondurable Consumption
302 Rubber Footwear 0.175 0.530 0.303 0.698 Other Consumption
201 Meat Products 0.174 0.351 0.268 0.614 Nondurable Consumption
202 Dairy Products 0.172 0.364 0.240 0.576 Nondurable Consumption
343 Heating Equipment 0.171 0.546 0.271 0.694 Investment
342 Cutlery 0.170 0.471 0.224 0.671 Other Consumption
249 Misc. Wood Products 0.169 0.408 0.244 0.543 Other Consumption
227 Carpets & Rugs 0.169 0.512 0.283 0.715 Durable Consumption
213 Chewing Tobacco 0.168 0.535 0.153 0.786 Nondurable Consumption
306 Rubber Products 0.168 0.472 0.249 0.553 Other Consumption
223 Wool Fabric 0.167 0.586 0.243 0.594 Other Consumption
322 Glass & Glassware 0.167 0.534 0.235 0.784 Durable Consumption
346 Metal Forging 0.166 0.396 0.274 0.717 Other Consumption
305 Packing Devices 0.166 0.321 0.227 0.391 Other Consumption
341 Metal Cans 0.166 0.361 0.285 0.496 Other Consumption
275 Commercial Printing 0.166 0.299 0.207 0.596 Other Consumption
285 Paints 0.164 0.600 0.240 0.709
395 Pens & Pencils 0.164 0.408 0.206 0.544 Other Consumption
323 Glass Products 0.164 0.370 0.234 0.602 Other Consumption
263 Paperboard Mills 0.163 0.446 0.192 0.437 Other Consumption
251 Household Furniture 0.159 0.469 0.251 0.769 Durable Consumption
228 Yarn & Thread Mills 0.157 0.431 0.311 0.635 Other Consumption
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Table 5: (continued)

SIC TFPR Sales Good Classification

Volatility AR Volatility AR

222 Silk Fabric 0.155 0.491 0.244 0.693 Other Consumption
224 Narrow Fabric 0.154 0.383 0.252 0.779 Other Consumption
262 Paper Mills 0.153 0.463 0.197 0.571 Other Consumption
244 Wood Containers 0.152 0.309 0.287 0.662 Other Consumption
291 Petroleum Refining 0.151 0.377 0.247 0.582 Nondurable Consumption
267 Converted Paper Prods 0.151 0.509 0.211 0.678 Other Consumption
271 Newspapers: Publishing 0.149 0.409 0.158 0.312 Nondurable Consumption
245 Wood Buildings 0.147 0.379 0.360 0.610 Investment
319 Other Leather Goods 0.141 0.331 0.206 0.746 Other Consumption
328 Stone Products 0.137 0.567 0.182 0.515 Investment
253 Public Bldg Furniture 0.133 0.515 0.258 0.601
315 Leather Gloves 0.132 0.459 0.210 0.331 Other Consumption
276 Business Forms 0.122 0.377 0.146 0.744 Other Consumption
265 Paperboard Containers 0.115 0.526 0.187 0.626 Other Consumption
375 Motorcycles, Bicycles 0.088 0.184 0.323 0.871 Durable Consumption
313 Boot & Shoe Cut Stock 0.067 0.712 0.113 0.496 Other Consumption
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Table 6: 1987 SIC

SIC Description

20 Food and Kindred Products
21 Tobacco Products
22 Textile Mill Products
23 Apparel
24 Lumber and Wood Products
25 Furniture
26 Paper Products
27 Printing and Publishing
28 Chemicals
29 Petroleum Refining
30 Rubber and Miscellaneous Plastics Products
31 Leather and Leather Products
32 Stone, Clay, Glass, and Concrete Products
33 Primary Metal Industries
34 Fabricated Metal Products, except Machinery and Transportation Equipment
35 Industrial and Commercial Machinery and Computer Equipment
36 Electronic and Other Electrical Equipment, except Computer Equipment
38 Instruments and Related Products
39 Miscellaneous Manufacturing Industries
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